Superconvergence of solution derivatives of the Shortley–Weller difference approximation to Poisson’s equation with singularities on polygonal domains

Zi-Cai Li a, Hsin-Yun Hu b, Song Wang c,*, Qing Fang d

a Department of Applied Mathematics and Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan 80424
b Department of Mathematics, Tung-Hai University, TaiChung, Taiwan
c School of Mathematics and Statistics, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
d Department of Mathematical Sciences, Faculty of Science, Yamagata University, Yamagata 990-8560, Japan

Available online 2 March 2007

This paper is dedicated to Professor Tetsure Yamamoto on the occasion of his 70th birthday.

Abstract

This paper presents a superconvergence analysis for the Shortley–Weller finite difference approximation of Poisson’s equation with unbounded derivatives on a polygonal domain. In this analysis, we first formulate the method as a special finite element/volume method. We then analyze the convergence of the method in a finite element framework. An $O(h^{1.5})$-order superconvergence is derived for the solution derivatives in a discrete H^1 norm.

© 2007 IMACS. Published by Elsevier B.V. All rights reserved.

MSC: 65N10; 65N30

Keywords: Superconvergence; Solution derivatives; Boundary singularity; Finite difference method; Stretching function; Shortley–Weller approximation; Poisson’s equation; Polygonal domains

1. Introduction

In this paper, we continue the study in [9,6] on superconvergence of solution derivatives of the Shortley–Weller finite approximations to the Poisson equation with the Dirichlet boundary condition

$$-\Delta u = -\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) = f(x, y), \quad (x, y) \in S, \quad (1.1)$$

$$u = g(x, y), \quad (x, y) \in \Gamma, \quad (1.2)$$

where $S \subset \mathbb{R}^2$ is a polygonal domain, Γ denotes the boundary of S and f and g are given functions. The superconvergence rates of orders $O(h^2)$ and $O(h^{1.5})$ of the solution derivatives in a discrete H^1 norm have been established.
for smooth problems on, respectively, rectangular and polygonal domains (cf. [9]). For problems with unbounded
derivatives near Γ, the O(h^2)-order superconvergence of solution derivatives in the discrete energy norm has been
achieved only for rectangular domains (cf. [6]). It is clear that in practice, rectangular domains are very restrictive,
and polygonal domains are more desirable. In this paper we shall extend the analysis in [6] to problems on polygonal
domains. In this investigation, two challenging problems become apparent: (1) how to find suitable local refinements
near the boundary using triangles and rectangles, and (2) how to estimate error bounds resulting from rectangular and
triangular elements. In what follows we use \(\Gamma_h \) to denote respectively the rectangular and triangular
elements associated with \((i, j)\) as shown in Fig. 1. For these elements, we have

For the first question, we adopt the ideas of combination in [5] to split a polygonal domain, \(S \), into several non-
overlapped subpolygons. Each sub-polygon can be partitioned into a mesh by a system of difference grids. To make
the global partition consistent, the mesh points along an interior boundary segment need to be common to the partitions
of the two neighboring subpolygons. Since the piecewise bilinear and linear admissible functions are continuous on
the entire domain, no errors result from the interior boundary segments, i.e., the method is conforming. Obviously, the
combined difference grids used make the finite difference method (FDM) more flexible.

As to the second problem, because no errors occur from the divergent integrals on triangular elements involving
the unbounded derivatives, we simply need to estimate the errors from the divergent integrals on rectangular elements.
New analysis is needed only to estimate errors from the approximate integrals on triangular elements involving
the non-homogeneous term of the equation. By following the arguments in [6], an O(h^{1.5}) superconvergence can be
achieved for the Shortley–Weller difference approximation.

This rest of paper is organized as follows. In the next section, we will first present the Shortley–Weller difference
scheme for the Poisson equation. We will then formulate the method as a special finite element method (FEM) and
a finite volume method (FVM). In Section 3, an error analysis for the numerical method is presented and the su-
perconvergence of order O(h^{1.5}) in a discrete norm is obtained. In Sections 4 and 5, we estimate the errors due to
the non-homogeneous term of equation on triangular elements and the those of the divergent integrals on rectangular
elements respectively.

Before further discussion, we first formulate (1.1) and (1.2) as a variational problem.

Let \(L^2(S) \) be the space of square integrable functions on \(S \), and let \(H^1(S) \) be the usual Sobolev space. We put
\[H^1_0(S) = \{ v : v \in H^1(S), \, v|_\Gamma = 0 \}. \]

The variational problem corresponding to (1.1)–(1.2) can be expressed by: Find \(u \in H^1(S) \) such that
\[a_h(u, v) = f_h(v), \quad \forall v \in H^1_0(S), \]
where the bilinear and linear forms are defined respectively by
\[a_h(u, v) = \iint_S \nabla u \nabla v \, ds, \quad f_h(v) = \iint_S f v \, ds. \]

2. The finite difference methods

In this section we will progressively construct the Shortley–Weller scheme [1, 13] on various difference meshes.
We will start with the basis Shortley–Weller scheme.

2.1. The basis Shortley–Weller difference approximation

To construct the finite difference scheme, we first define a finite difference mesh for the solution domain \(S \) and
its boundary \(\Gamma \) as follows. Since \(S \) is polygonal, we assume that it is divided into a mesh containing rectangles
and triangles with the mesh lines either parallel to one of the axes or on \(\Gamma \). In this mesh, all the triangles have at least one
side on \(\Gamma \). Let \(I \) be the (double) index set of this mesh and \(X = (x_i, y_j), \forall (i, j) \in I \) be the set of mesh nodes on \(\bar{S} \).

We now split the nodal set \(X \) into two disjoint subsets: the set containing nodes in \(S \), denoted by \(S_h \), and that on \(\Gamma \),
denoted by \(\Gamma_h \). The index subsets of \(I \) corresponding to \(S_h \) and \(\Gamma_h \) are denoted by \(I_S \) and \(I_F \), respectively. For any feasible indices \(i \) and \(j \), let \(h_i = x_{i+1} - x_i \) and \(k_j = y_{j+1} - y_j \) be the step sizes along the two directions, respectively.

We put \(h = \max_{i,j} \{ h_i, k_j \} \). In what follows we use \(\Box_{ij} \) and \(\Delta_{ij} \) to denote respectively the rectangular and triangular
element associated with \((i, j)\) as shown in Fig. 1. For these elements, we have
\[S = S_{\square} \cup S_{\triangle} := \left(\bigcup_{ij} S_{\square} \right) \cup \left(\bigcup_{ij} S_{\triangle} \right). \] (2.1)

As constructed, all elements in \(S_{\triangle} \) are right-angled triangles and located near the boundary \(\Gamma \). Therefore, the two nodes other than \((x_i, y_j)\) of \(S_{\triangle} \) are in \(\Gamma_h \). Obviously, the total number of triangles is much less than the number of rectangles in this mesh. As shown in [5], the conventional finite difference method can be formulated as a special finite element method using piecewise bilinear and linear interpolating functions, \(v(x, y) \), on \(S_{\square} \) and \(S_{\triangle} \) defined respectively by,

\[v(x, y) = \frac{1}{h_i k_j} \left\{ (x_{i+1} - x)(y_{j+1} - y)v_{i,j} + (x - x_i)(y_{j+1} - y)v_{i+1,j} + (x_{i+1} - x)(y - y_j)v_{i,j+1} + (x - x_i)(y - y_j)v_{i+1,j+1} \right\}, \quad (x, y) \in S_{\square}, \] (2.2)

and

\[v(x, y) = v_{i,j} + \frac{(x - x_i)}{h_i} (v_{i+1,j} - v_{i,j}) + \frac{(y - y_j)}{k_j} (v_{i,j+1} - v_{i,j}), \quad (x, y) \in S_{\triangle}, \] (2.3)

where \(v_{k,\ell} \) denotes the nodal value of \(v \) at \((x_k, y_\ell)\). Let \(V_h \subseteq H^1(S) \) denote a finite dimensional space of the piecewise bilinear and linear functions \(v \) of (2.2) and (2.3) satisfying (1.2), and we denote by \(V^0_h \) the subset of \(V_h \) satisfying \(v = 0 \) on \(\Gamma \). The FDM with the quadrature approximations to the line and area integrals are defined by: Find \(u_h \in V_h \) such that

\[\hat{a}_h(u_h, v) = \hat{f}_h(v), \quad \forall v \in V^0_h, \] (2.4)

where

\[\hat{a}_h(u, v) = \iint_S \nabla u \nabla v \, ds = \sum_{ij \in I_S} \left[\iint_{S_{\square}} \nabla u \nabla v \, ds + \iint_{S_{\triangle}} \nabla u \nabla v \, ds \right] \] (2.5)

\[\hat{f}_h(v) = \iint_S f \, v \, ds = \sum_{ij \in I_S} \left[\iint_{S_{\square}} f \, v \, ds + \iint_{S_{\triangle}} f \, v \, ds \right], \] (2.6)

where \(ij \in I_S \) means the grids \((x_i, y_j) = (i, j) \in S_h \). The approximate integrals in (2.5) and (2.6) over rectangles \(S_{\square} \) are evaluated by the following quadrature rules

\[\iint_{S_{\square}} \nabla u \nabla v \, ds = \iint_{S_{\square}} u_{x} v_{x} \, ds + \iint_{S_{\square}} u_{y} v_{y} \, ds, \] (2.7)

\[\iint_{S_{\square}} u_{x} v_{x} \, ds = \frac{h_i k_j}{2} \left[u_{x} (i + \frac{1}{2}, j) v_{x} (i + \frac{1}{2}, j) + u_{x} (i + \frac{1}{2}, j + 1) v_{x} (i + \frac{1}{2}, j + 1) \right]. \] (2.8)
where \(w_{ij} = w(x_i, y_j) \) for any \(w \) and \(i,j \) and

\[
\begin{align*}
 u_x(i + \frac{1}{2}, j) & = \frac{u_{i+1,j} - u_{i,j}}{h_i}, & u_y(i, j + \frac{1}{2}) & = \frac{u_{i,j+1} - u_{i,j}}{k_j}
\end{align*}
\]

with the mesh nodes being defined in Fig. 1. Similarly, the integrals over a triangle \(\Delta_{ij} \) used in (2.5) and (2.6) are approximated by

\[
\begin{align*}
 \int_{\Delta_{ij}} \nabla u \nabla v \, ds &= \frac{h_{i,j}}{2} \left[u_x(i + \frac{1}{2}, j) v_x(i + \frac{1}{2}, j) + u_y(i, j + \frac{1}{2}) v_y(i, j + \frac{1}{2}) \right], \\
 \int_{\Delta_{ij}} f v \, ds &= \frac{h_{i,j}}{8} \left[2 f_{ij} v_{ij} + f_{i+1,j} v_{i+1,j} + f_{i,j+1} v_{i,j+1} \right].
\end{align*}
\]

From (2.4) and (2.7)–(2.12), the traditional Shortley–Weller difference scheme centered at the grid \((i, j) \in S_h\) is given by

\[
\begin{align*}
 - \frac{(k_{j-1} + k_j)}{2h_i} (u_{i+1,j} - u_{i,j}) - \frac{(k_{j-1} + k_j)}{2h_{i-1}} (u_{i,j-1} - u_{i,j}) - \frac{(h_{i-1} + h_i)}{2k_j} (u_{i,j+1} - u_{i,j}) - \frac{(h_{i-1} + h_i)}{4} f_{i,j}.
\end{align*}
\]

Dividing both sides of the above equation by \(\frac{(h_{i-1} + h_i)(k_{j-1} + k_j)}{4} \) gives the Shortley–Weller approximation to the equation.

For clarity, we will, in this paper, concentrate on the basic feature of the FDM in which the derivatives \(u_x \) and \(u_y \) are replaced approximately and straightforwardly by the divided differences. Hence, basic elements in the FDM must be rectangles \(\square_{ij} \) and right angled triangles \(\Delta_{ij} \). More general partitions of \(S \) into rectangles \(\square_{ij} \) and triangles \(\Delta_{ij} \) are also possible if we use the ideas of combined methods in [5]: Let \(S \) be divided by an interior boundary \(\Gamma_0 \) into several non-overlapped subdomains \(S_i, i = 1, 2, \ldots, N \). Each \(S_i \) is further partitioned into rectangles and triangles. We assume that the grid points \((i, j) \) on \(\Gamma_0 \) are common to the meshes on both sides of \(\Gamma_0 \). In this case our method is conforming because there is no discontinuity across \(\Gamma_0 \) in the piecewise linear and bilinear interpolating functions.

2.2. Reformulation of the FDM as a FVM

From the previous subsection we see that the FDM can be regarded as a special FEM. This formulation has the following three characteristics:

1. Based on the partition (2.1), we see that the right-angled triangles in the mesh are located only near exterior boundary \(\Gamma \) and interior boundary \(\Gamma_0 \). Hence, the partition contains predominantly rectangles.
2. In the FEM formulation, we use bilinear and linear basis functions corresponding to \(\square_{ij} \) and \(\Delta_{ij} \) respectively, and thus it is a combination of bilinear and linear elements.
3. Special quadrature rules approximating the integrals are used to facilitate formulation of difference equations. In this formulation, the derivatives are approximated by the divided differences.

As will be demonstrated later in this subsection, it is also possible to reformulate the FDM as a finite volume method which enables us to write down the difference equations straightforwardly. Merits and drawbacks are twins. Compared with FEMs, the merit of the FDM is the facile formulation of linear algebraic equations, but the drawback is it is less flexible than the linear FEM in which rather arbitrary \(\Delta_{ij} \) can be chosen.
Let us consider two kinds of FEMs: find u_h and $u_E^h \in V_h$ such that

$$\int_S \nabla u_h \nabla v = \int_S f v, \quad \forall v \in V_h^0, \quad (2.13)$$

$$\int_S \nabla u_E^h \nabla v = \int_S f v, \quad \forall v \in V_h^0, \quad (2.14)$$

where u_h and u_E^h are the solutions from the Shortley–Weller approximation and the linear FEM, respectively.

Rule (2.12) for Δ_{ij} is used in the Shortley–Weller approximation. The domain S may be partitioned into a mesh containing right angled triangles Δ_{ij} only, i.e., $S = S_{\Delta}$, which can be done by splitting each $\Box_{ij} \in S$ into two triangles Δ^+_{ij} and Δ^-_{ij} by a diagonal of \Box_{ij}. Note that the integral $\int_S \nabla u_E^h \nabla v$, can be evaluated exactly because both u_E^h and v are the linear functions. However, $\int_{\Delta_{ij}} f v$ is usually evaluated approximately by some quadrature rules because f may be arbitrary. Let us take the triangle Δ_{ij} as an example. A possible quadrature rule is

$$\hat{\int}_{\Delta_{ij}} f v ds = \frac{h_{ij} k_{ij}}{6} [f_{ij} v_{ij} + f_{i+1,j} v_{i+1,j} + f_{i,j+1} v_{i,j+1}].$$

Note that for the linear FEM, even Δ_{ij}’s are not right angled triangles, the integral $\int_S \nabla u_E^h \nabla v$, can still be evaluated exactly (cf., for example, [2,10]).

It is easy to show that the linear systems associated with (2.13)–(2.14), are respectively

$$A \vec{x} = \vec{b}_1, \quad \text{and} \quad A \vec{x}^E = \vec{b}_2,$$

where A is the system matrix arising from both (2.13) and (2.14) and the unknown vectors \vec{x} and \vec{x}^E consist of the nodal values of u_h and u_E^h, respectively. The above explanation links the FDM to the FEM.

Next, we make a link between the FDM and a special FVM. In [8], the finite volume method can also be viewed as a special FEM based on a Delaunay triangulation. To formulate the FDM as a finite volume scheme, we define a partition of domain S dual to the original by the bisectors of the edges of each \Box_{ij} and Δ_{ij}. We denote this dual partition by

$$S = S_C := \left(\bigcup_{ij} S_{ij} \right), \quad (2.15)$$

where each S_{ij} is called the control region of (x_i, y_j), see Fig. 2. Integrating the left-hand side of (1.1) by parts on S_{ij}, we have

$$-\int_{\partial S_{ij}} \frac{\partial u}{\partial n} = \int_{S_{ij}} f,$$

where n denotes the unit vector outward normal to ∂S_{ij} and ∂S_{ij} denotes the boundary of S_{ij}. Applying the one-point quadrature rule and a proper quadrature rule (to be defined later) to the right-hand and left-hand sides of the above equation, respectively, gives
− \int_{S_{ij}} \frac{\partial u}{\partial n} = |S_{ij}| f_{ij}, \quad (2.16)

where \(|S_{ij}| \) denotes the area of \(S_{ij} \). To define the approximation on the left-hand side of (2.16), we take tile in Fig. 2 as an example. In this case, we have \(|S_{ij}| = \frac{1}{4}(h_{i-1} + h_i)(k_{j-1} + k_j) \). Since \(\partial S_{ij} \) consists of four segments, the right-hand side of (2.16) can be approximated by the following finite difference scheme

\[
\int_{\partial S_{ij}} \frac{\partial u}{\partial n} = \int_{\partial AB} \frac{\partial u}{\partial n} + \int_{\partial BC} \frac{\partial u}{\partial n} + \int_{\partial CD} \frac{\partial u}{\partial n} + \int_{\partial DA} \frac{\partial u}{\partial n}.
\]

where

\[
\int_{\partial AB} \frac{\partial u}{\partial n} = u_{i,j-1} - u_{ij} \left(\frac{h_{i-1} + h_i}{2} \right), \quad \int_{\partial BC} \frac{\partial u}{\partial n} = u_{i+1,j} - u_{ij} \left(\frac{k_{j-1} + k_j}{2} \right),
\]

\[
\int_{\partial CD} \frac{\partial u}{\partial n} = u_{i,j+1} - u_{ij} \left(\frac{h_{i-1} + h_i}{2} \right), \quad \int_{\partial DA} \frac{\partial u}{\partial n} = u_{i-1,j} - u_{ij} \left(\frac{k_{j-1} + k_j}{2} \right).
\]

Clearly, Eq. (2.16) with the above quadrature rules becomes the Shortley–Weller difference approximation.

2.3. Difference scheme for problems with singularities

In this subsection we will modify the previous numerical method for (1.1) with unbounded derivatives on \(\Gamma_U \subseteq \Gamma \). This includes a meshing technique and a modification of the difference scheme, as given below.

To mesh \(S \), we follow the following rules.

- We divide \(S \) into several subdomains by an interior boundary \(\Gamma_0 \), and mesh each of the subdomain separately.
- For the subdomain containing part of \(\Gamma_U \), we mesh it mesh using mesh lines parallel or perpendicular to that part of \(\Gamma_U \). The mesh lines parallel to \(\Gamma_U \) are normally graded according to a rule to be defined.
- Make sure that all the mesh nodes on \(\Gamma_0 \) are common to the meshes on both sides of \(\Gamma_0 \) to avoid the case of non-conformity.

Let us demonstrate this using the subdomain in Fig. 3(a), in which the solution derivatives are assumed to be unbounded on two edges, \(\overline{CD} \) and \(\overline{DB} \). For this case, we split this subdomain into two subsubdomains, denoted \(S_1 \) and \(S_2 \), by \(\Gamma_0 = \overline{DE} \) that is chosen such that \(\angle CDE \approx \angle EDB \). Then two local Cartesian coordinate systems are used in \(S_1 \) and \(S_2 \) respectively, and the local non-uniform meshes are used along \(\overline{CD} \) and \(\overline{DB} \). Fig. 3(b) also illustrates a
partition for a problem which has unbounded derivative along the edge BD. Clearly, a mesh constructed in this way contains mostly rectangular elements. Triangular elements are needed only near Γ and Γ_0.

Since the above meshing technique normally creates pairs of triangular element sharing a common edge on Γ_0 the numerical scheme in Sections 2.1 or 2.2 needs to be modified. Let us take a typical case shown in Fig. 4 for demonstration which contains two rectangular and four triangular elements. Based on the FVM interpretation (2.16) and using the local index notation, we construct the difference scheme associated with Node 0 as follows

$$
\frac{1}{2} \left\{ \frac{k_1 + k_3}{h_1} (v_0 - v_1) + \frac{k_2 + k_4}{h_2} (v_0 - v_2) + \frac{h_2 + h_3}{k_2} (v_0 - v_3) + \frac{h_1 + h_4}{k_1} (v_0 - v_4) \right\}
$$

$$
= \frac{1}{8} \left\{ (h_1 + h_4)(k_1 + k_3) + (h_2 + h_3)(k_2 + k_4) \right\} f_0,
$$

where v_0 denotes the v_{ij} and v_k, $k = 1, 2, 3, 4$, are the nodal values of v at the neighboring grids. Difference schemes for other cases can be constructed similarly to the above.

A linkage is explored for three popular methods, the FDM, the FDM and the FVM, as given in Table 1. For different problems or different requirements, different numerical methods may be chosen [5]. As indicated in Table 1, the FDM has a limitation of grid partition for arbitrary domains because it is based on rectangles and right triangles. If such characteristics can not be retained, such a method is not of FDM. For the corner singularities, the FEM is obviously superior to the FDM. However, for line singularities, the FDM outperforms the FEM due to its simplicity, and due to the error analysis given in this paper. Each method has its own merits and drawbacks. The purpose of this research is to explore the merits, particularly the superconvergence phenomenon, of the FDM for PDEs with line singularities.

3. Error analysis of the method

In this section we present the main results of the paper on the superconvergence of the solution of the finite difference method in discussed Section 2. This error analysis is carried out using the following discrete H^1 norm:

$$
\|v\|_{1,S}^2 := \|v\|_{1,\bar{S}}^2 = \|v\|_{1,S}^2 + \|v\|_{0,S}^2, \quad \forall v \in H^1(S)
$$
where \(\|v\|_{1,S} \) and \(\|v\|_{0,S} \) are defined respectively by
\[
\|v\|_{1}^{2} = \|v\|_{1,S}^{2} = \sum_{ij \in IS} \int_{\triangle ij} (\nabla v)^{2} ds + \int_{\triangle ij} (\nabla v)^{2} ds,
\]
\[
\|v\|_{0}^{2} = \|v\|_{0,S}^{2} = \sum_{ij \in IS} \int_{\triangle ij} v^{2} ds + \int_{\triangle ij} v^{2} ds.
\]

Here the quadrature rules, \(\int_{\triangle ij} (\nabla v)^{2} ds, \int_{\triangle ij} (\nabla v)^{2} ds, \int_{\triangle ij} v^{2} ds \) and \(\int_{\triangle ij} v^{2} ds \) are given in Section 2.1.

It has been shown in [2], p. 196, that
\[
\|u - u_{h}\|_{1} \leq C \left\{ \|u - u_{I}\|_{1} + \sup_{w \in V_{h}^{0}} \frac{|(\int_{S} - \int_{S}) \nabla u_{I} \nabla w ds|}{\|w\|_{1}} + \sup_{w \in V_{h}^{0}} \frac{|(\int_{S} - \int_{S}) f w ds|}{\|w\|_{1}} \right\},
\]
where \(u_{I} \) is the \(V_{h} \)-interpolant of the true solution \(u \). Since both \(u_{I} \) and \(w \) are linear on \(\triangle ij \), it is easy to verify that
\[
\int_{\triangle ij} \nabla u_{I} \nabla w ds - \int_{\triangle ij} \nabla u_{I} \nabla w ds = 0.
\]

Splitting each integral on the right-hand side of (3.1) into one over the union of rectangular elements and another over the union of the triangular elements and using the above equality, we have from (3.1)
\[
\|u - u_{h}\|_{1} \leq C \left\{ \sup_{w \in V_{h}^{0}} \frac{|(\int_{S} - \int_{S}) \nabla u_{I} \nabla w ds|}{\|w\|_{1}} + \left(\|u - u_{I}\|_{1} + \sup_{w \in V_{h}^{0}} \frac{|(\int_{S} - \int_{S}) f w ds|}{\|w\|_{1}} \right) \right\}
\]
\[
= : T + T_{1} + T_{2}.
\]

The following assumptions characterize the natures of the singularity in the solution and the right-hand side of the continuous Poisson equation and the finite difference mesh near the boundary \(\Gamma_{U} \subseteq \Gamma \).

A1: The derivatives of the solution \(u \) close to \(\Gamma_{U} \) satisfies (cf. [12,3]):
\[
\sup_{0 < d(x, y) \leq 1} d^{-\sigma} \left(x, y \right) \frac{\partial^{i} u(x, y)}{\partial n^{i}} \leq C_{1}, \quad i = 1, 2, 3, 4,
\]
for some constants \(\sigma > 0 \) and \(C_{1} > 0 \), independent of \(u \), where \(d \) denotes the distance between \((x, y) \in S \) and \(\Gamma_{U} \) and \(n \) denotes the unit vector in the direction from \((x, y) \) to the point on \(\Gamma_{U} \) closest to \((x, y) \). Moreover, we assume that for \(0 < r \ll 1 \), \(u \) satisfies
\[
\sup_{\text{dist}(P, Q) \leq r} |u(P) - u(Q)| \leq C r^{\sigma},
\]
where \(P \) and \(Q \) are two arbitrary points in \(S \) near \(\Gamma_{U} \). In this paper, we assume
\[
\sigma = \frac{1}{2} + \mu
\]
for some \(\mu > 0 \). This is necessary for the derivative estimates used in the analysis.

A2: The function \(f \) satisfies the following properties (cf. [12,3]):
\[
\sup_{0 < d \leq 1} d^{-\nu} \left(x, y \right) \frac{\partial^{i} f(x, y)}{\partial n^{i}} \leq C_{2}, \quad i = 0, 1, 2,
\]
\[
\sup_{\text{dist}(P, Q) \leq r} |f(P) - f(Q)| \leq C r^{\nu},
\]
(3.4)
for some constants \(\nu > 0, C_2 > 0 \) and \(0 < r \ll 1 \). To make \(\nu \) compatible with (3.3), we assume it satisfies

\[
\nu = -\frac{3}{2} + \mu, \quad \mu > 0.
\]

A3: We assume that the difference mesh near \(\Gamma_U \) is constructed locally so that the mesh lines are either parallel or perpendicular to one of the boundary segments in \(\Gamma_U \). Furthermore, we assume that the mesh lines parallel to one segment of \(\Gamma_U \) are constructed non-uniformly according to the distances from the segment \(d_\ell = \psi(\ell h) \), \(\ell = 0, 1, \ldots, n \), for a positive integer \(n \), where \(h = \frac{1}{n} \) and \(\psi(\cdot) \) is the stretching function on \([0, 1]\) defined by

\[
\psi(s) = \frac{1}{\int_0^1 z^p(1-z)^p \, dz} \int_0^s z^p(1-z)^p \, dz, \quad s \in [0, 1],
\]

with \(p > 0 \) a (proper) constant (cf. [12,3]), whose choice will be given in the following theorems.

A triangulation family with the mesh parameter \(h \), is said to be regular if for each triangle \(\triangle_{ij} \) of the mesh we have if

\[
\frac{\max\{l_{ij}^{(1)}, l_{ij}^{(2)}, l_{ij}^{(3)}\}}{\min\{l_{ij}^{(1)}, l_{ij}^{(2)}, l_{ij}^{(3)}\}} \leq C
\]

for all \(0 < h \leq h_0 \), where \(l_{ij}^{(k)} \), \(k = 1, 2, 3 \), denote the lengths of the three sides of \(\triangle_{ij} \), \(h_0 \) is a positive constant and \(C \) is a positive constant, independent of the mesh sizes. The regularity implies that the interior angles of any \(\triangle_{ij} \) are bounded below by a positive constant when \(h \to 0^+ \). However, for the meshes defined in the previous section some triangles having at least one side on \(\Gamma \) and \(\Gamma_0 \) may satisfy the above inequality because of the stretching function given in A3. Hence, we make the following assumption.

A4: The family of triangles located on \(\Gamma \) or \(\Gamma_0 \), using the local refinements techniques in A3 is regular.

To make our proof notationally simple, we consider a special case of the above problem which has triangular solution domains of the shape depicted in Fig. 5. We simplify Assumptions A1 and A2 as the following two.

A5: Suppose that the solution \(u \) is sufficiently smooth except\(^\dagger\) for the derivatives with respect to \(x \) at \(x = 0 \), which are unbounded and satisfy

\[^\dagger\] This implies that up to and including 4th order derivatives with respect to \(y \) used are bounded. However, the derivatives with respect to \(x \) are constrained by (3.5).
where \(r \) gives the bound of the solution \(p \) of \(S \), giving \(\mu > 0 \) in (3.5), and let

\[
\frac{\partial^i}{\partial x^i} u(x, y) \quad \text{and} \quad \frac{\partial^i}{\partial y^i} f(x, y) \quad \text{in (3.2)},
\]

where \(\sigma = \frac{1}{2} + \mu, v = -\frac{3}{2} + \mu \) and \(0 < \mu < \frac{3}{2} \).

Note that Assumptions \(A1, A2 \) and \(A5 \) are commonly used for problems with unbounded derivatives near the boundary, one popular type of boundary singularities (cf., for example, \([3,4,14,6,11,12]\)). For this case, the application of the meshing technique in \(A3 \) results in a mesh depicted in Fig. 5. This is given in the following assumption.

A6: Let both \(x_i \) and \(y_j \) of partition in \(S \) be chosen as in \(A3 \), see Fig. 5.

Finally, we have the following theorem, whose proof is deferred in Sections 4 and 5.

Theorem 3.1. Let \(S = S_\square \cup S_\triangle \) and \(A1–A6 \) be fulfilled. For \(\sigma = \frac{1}{2} + \mu, v = -\frac{3}{2} + \mu \), \(\mu > 0 \), there exists the error bound of the solution \(u_\mu \) from the Shortley–Weller difference approximation

\[
\|u - u_\mu\|_1 \leq T + T_1 + T_2 \leq C h^r, \quad r \leq 1.5,
\]

where \(r = (p + 1)\mu \) and \(T, T_1, T_2 \) are defined in (3.2).

The equation \(p + 1 = \frac{1.5}{\mu} \) from Theorem 3.1 may not reachable, since the condition number \(\text{Cond} = O(h_{\min}^{-2}) = O(h^{-2(p+1)}) \). From the error analysis, the solution singularity \(u = O(h^{p+1}) \) with \(\mu > 0 \) is allowable to achieve the optimal convergence rate \(O(h^{1.5}) \). However, for stability, \(\mu \) should be larger than \(\mu_0 (> 0) \) by noting that \(\mu = 0.15 \) gives \(p + 1 = 10 \), leading to the huge condition number \(\text{Cond} = O(h^{-20}) \).

4. Bounds for \(T_1 \) and \(T_2 \)

In this section, we will estimate bounds on \(T_1 \) and \(T_2 \) in (3.2). Bounds on \(T \) will be established in the next section. The following three lemmas have been established in [9,6].

Lemma 4.1. Let \(u \) be the exact solution to (1.1)–(1.2), and let \(u_I \) be the \(V_h \)-interpolant of \(u \). Then, we have

\[
\|u - u_I\|_1 = \left\{ \sum_{ij \in \mathcal{I}_S} \|u - u_I\|_1^2_{1,\mathcal{I}_{ij}} + \sum_{ij \in \mathcal{I}_S} \|u - u_I\|_1^2_{1,\Delta_{ij}} \right\}^{\frac{1}{2}},
\]

and

\[
\|u - u_I\|_1^2_{1,\mathcal{I}_{ij}} \leq \frac{1}{2} \int_{\mathcal{I}_{ij}} \kappa_{1,i}(x) \{u_{xxx}(x, y) + u_{xxy}(x, y, y + 1)\} + \kappa_{2,j}(y) \{u_{yyy}(x, y) + u_{yxy}(x, y + 1, y)\},
\]

\[
\|u - u_I\|_1^2_{1,\Delta_{ij}} \leq \int_{\Delta_{ij}} \kappa_{1,i}(x) u_{xxx}(x, y) + \kappa_{2,j}(y) u_{yyy}(x, y),
\]

where \(u_{x^i y^j} = \frac{\partial^{i+j}u}{\partial x^i \partial y^j} \), and

\[
\kappa_{1,i}(x) = \begin{cases} \frac{1}{2} (x - x_i)^2 & \text{for } x_i \leq x \leq x_i + \frac{h_i}{2}, \\ \frac{1}{2} (x_{i+1} - x)^2 & \text{for } x_i + \frac{h_i}{2} \leq x \leq x_{i+1}, \end{cases}
\]

\[
\kappa_{2,j}(y) = \begin{cases} \frac{1}{2} (y - y_j)^2 & \text{for } y_j \leq y \leq y_j + \frac{k_j}{2}, \\ \frac{1}{2} (y_{j+1} - y)^2 & \text{for } y_j + \frac{k_j}{2} \leq y \leq y_{j+1}. \end{cases}
\]
Lemma 4.2. There exists the bound:

\[\left| \left(\iint_{S_0} f - \iint_{S_0} \right) w \right| \leq C \| f \|_{\mathcal{D}_2} \times \| w \|_{1, S_0}, \quad w \in V_h^0, \]

where

\[\| f \|_{\mathcal{D}_2} = \sqrt{\sum_{\triangle_{ij} \in S_0} \iint_{\triangle_{ij}} p_{ij}^2 + \| q_{ij} \|_{1, \triangle_{ij}}}, \]

\[p_{ij}^2 = \left(f_x^2 + f_y^2(x, y) + f_z^2(x, y) \right) (x - x_i)^2 (x - x_{i+1})^2 \]

\[+ \left(f_x^2 + f_y^2(x, y) + f_z^2(x_{i+1}, y) \right) (y - y_j)^2 (y - y_{j+1})^2, \]

\[q_{ij}^2 = \left(f_{xx}^2 + f_{yy}^2(x, y) + f_{zz}^2(x, y) \right) (x - x_i)^2 (x - x_{i+1})^2 \]

\[+ \left(f_{xy}^2 + f_{yx}^2(x, y) + f_{yz}^2(x_{i+1}, y) \right) (y - y_j)^2 (y - y_{j+1})^2, \]

and

\[\| q_{ij} \|_{1, \triangle_{ij}} \leq \sup_{w \in V_h^0} \iint_{\triangle_{ij}} q_{ij} w \| w \|_{1, \triangle_{ij}}. \]

Combining Lemmas 4.1 and 4.2, we have following lemma.

Lemma 4.3. Let A1–A3 be given. There exists the error bound of \(T_1 \),

\[T_1 \leq C \sum_{\ell=1}^{n} \left\{ \varepsilon^{2 \mu(p+1) - 5} \times h^{2 \mu(p+1)} \right\}^{\frac{1}{2}}, \]

where \(h = \frac{1}{N} \), as given in A3. Moreover, for \(\sigma = \frac{1}{2} + \mu \) and \(\nu = -\frac{3}{2} + \mu \), \(\mu > 0 \), when putting \(r = (p + 1) \mu \), we have

\[T_1 = \begin{cases} O(h^r), & \text{if } r < 2, \\ O\left(h^2 \sqrt{\ln \frac{1}{h}} \right), & \text{if } r = 2, \\ O(h^2), & \text{if } r > 2. \end{cases} \]

Next, we estimate bounds on \(T_2 \) in (3.2). Consider the quadrature rule on \(\triangle_{ij} \),

\[\iint_{\triangle_{ij}} f = \frac{|\triangle_{ij}|}{4} (2f_1 + f_2 + f_3), \quad (4.1) \]

where 1 denotes the right-angled vertex and 2 and 3 the other two vertices of \(\triangle_{ij} \). We have following lemma, whose proof is given in Li et al. [7].

Lemma 4.4. Let \(\triangle_{ij} \) be a right-angled triangle with the boundary lengths \(h_{ij} \) and \(k_{ij} \) forming the right angle satisfying \(k_{ij} \leq C h_{ij} \) for a positive constant \(C \), independent of \(h_{ij} \) and \(k_{ij} \). Then, the quadrature rule in (4.1) satisfies

\[\left| \iint_{\triangle_{ij}} f - \iint_{\triangle_{ij}} f \right| \leq C h_{ij} \sqrt{h_{ij} k_{ij}} |f|_{1, \triangle_{ij}}, \quad (4.2) \]

where \(|f|_{k, \triangle_{ij}} \) denotes the Sobolev norm of \(f \) \(\triangle_{ij} \).

From Lemma 4.4 and the Cauchy–Schwarz inequality we have the following lemma (see [7]).
Lemma 4.5. Let $S_{\triangle} = \bigcup_{ij} \Delta_{ij}$, and let h_{ij} and k_{ij} be the lengths of the two sides of Δ_{ij} forming the right angle. If $h_{ij} \leq C k_{ij}$ for a constant $C > 0$, independent of the mesh sizes, then there exists the bound,

\[
\left| \frac{\int \int_{S_{\triangle}} - \int \int_{S_{\triangle}^w} f \, w}{\|w\|_{1,S_{\triangle}}} \right| \leq C \|S\|_{\Delta}, \quad w \in V_h^0,
\]

where $w \in V_h^0$ and

\[
\|S\|_{\Delta} = \left\{ \sum_{ij} \left(\int \int_{\Delta_{ij}} h_{ij}^2 (\tilde{f}_{ij})^2 + \|h_{ij}(D_{\tilde{f}_{ij}})\|_{1-1,\Delta_{ij}}^2 \right) \right\}^{\frac{1}{2}}.
\]

Here $\tilde{f}_{ij} = f(\xi_{ij})$ with ξ_{ij} a fixed (but unknown) point in Δ_{ij}, and $D_f = \sqrt{f_x^2 + f_y^2}$.

Theorem 4.1. Let A1–A4 be fulfilled. Then, there exists a positive constant C, independent of mesh sizes, such that

\[
T_2 \leq C \sum_{\ell=1}^n \left\{ e^{2\mu(p+1)-3} \times h^{2\mu(p+1)\ell} \right\}^\frac{1}{2},
\]

where $h = \frac{1}{n}$ as given in A3. Moreover, for $\sigma = \frac{1}{2} + \mu$ and $v = -\frac{3}{2} + \mu$, $\mu > 0$, we have

\[
T_2 = \begin{cases}
O(h^r), & \text{if } r < 1.5, \\
O\left(h^{1.5} \sqrt{\ln \frac{1}{h}}\right) = O(h^{1.5-\delta}), & 0 < \delta \ll 1, \text{ if } r = 1.5, \\
O(h^{1.5}), & \text{if } r > 1.5,
\end{cases}
\]

where $r = (p + 1)\mu$.

Proof. Choose the difference grids (x_i, y_j) with the distance $d_\ell = O((\ell h)^{p+1})$ to Γ, and let $t_\ell = d_{\ell+1} - d_\ell = O(h(\ell h)^p)$ denote the diameters of \bigcirc_{ij} and Δ_{ij}. From Assumption A4, the elements $\Delta_{ij} \in S_{\triangle}$ can be re-ordered according to the distance sequence, d_ℓ, to Γ with max\{h_{ij}, k_{ij}\} $\leq C t_\ell$ and then

\[
(D_{k} \tilde{f}_{ij})^2 = O(d_\ell^{2\nu-2k}) = O(d_\ell^{2\sigma-4-2k}).
\]

We have

\[
\int \int_{\Delta_{ij}} h_{ij}^2 \tilde{f}_{ij}^2 \leq C t^4_\ell d_\ell^{2\nu} = C t_\ell^3 d_\ell^{2\alpha-4} t_\ell \leq C \ell^{(2\sigma-1)(p+1)-3} \times h^{(2\sigma-1)(p+1)} t_\ell,
\]

\[
\|h_{ij}(D_{\tilde{f}_{ij}})\|_{1-1,\Delta_{ij}} \leq C \ell^{(2\sigma-1)(p+1)-3} \times h^{(2\sigma-1)(p+1)} t_\ell.
\]

Hence, we have from Lemma 4.5

\[
T_2 \leq C \|S\|_{\Delta} \leq \left\{ \sum_{ij \in I_S} \left(\int \int_{\Delta_{ij}} h_{ij}^2 \tilde{f}_{ij}^2 + \|h_{ij} D_{\tilde{f}_{ij}}\|_{1-1,\Delta_{ij}}^2 \right) \right\}^{\frac{1}{2}} \leq C \left\{ \sum_{\ell=1}^n \ell^{2\mu(p+1)-3} \times h^{2\mu(p+1)} t_\ell \right\}^{\frac{1}{2}} \leq C \left\{ \sum_{\ell=1}^n e^{2\mu(p+1)-3} \times h^{2\mu(p+1)} t_\ell \right\}^{\frac{1}{2}}.
\]

This is (4.4), and Eq. (4.5) follows from $r = (p + 1)\mu$ and $\sum_{\ell=1}^n t_\ell \leq C$. It completes the proof of Theorem 4.1. \qed
5. Bounds on T

In this section, we derive some bounds on T in (3.2). To achieve this, we first note

$$
\left(\int \int_{S_0} - \int \int_{S_0} \right) \nabla u \nabla v \, ds = \left(\int \int_{S_0} - \int \int_{S_0} \right) \left\{ (u_I)_x v_x + (u_I)_y v_y \right\}
$$

$$
= \sum_{i,j \in I_S} \left(\int \int_{\square_{ij}} - \int \int_{\square_{ij}} \right) \left\{ (u_I)_x v_x + (u_I)_y v_y \right\}.
$$

(5.1)

The present analysis has two differences from that in [6]: (1) The Dirichlet boundary condition is not imposed on $\partial S_0 \subset S$, where $S_0 = \bigcup_{i,j} \square_{ij}$. (2) Both grids x_j and y_j along x axis and y axis are chosen to be local refinements.

Let us estimate the bounds of the first term on the right hand side of (5.1). After some manipulations, we obtain

$$
\int \int_{\square_{ij}} (u_I)_x v_x = \frac{k_j}{3h_i} \left\{ (u_4 - u_3)(v_4 - v_3) + (u_2 - u_1)(v_2 - v_1) \right\}
$$

$$
+ \frac{1}{2} (u_4 - u_3)(v_2 - v_1) + \frac{1}{2} (u_2 - u_1)(v_4 - v_3),
$$

and

$$
\int \int_{\square_{ij}} (u_I)_x v_x = \frac{k_j}{2h_i} \left\{ (u_4 - u_3)(v_4 - v_3) + (u_2 - u_1)(v_2 - v_1) \right\}.
$$

where subscripts 1, 2, 3 and 4 represent grids $(i, j), (i + 1, j), (i, j + 1)$ and $(i + 1, j + 1)$ respectively. Hence we have

$$
\left(\int \int_{\square_{ij}} - \int \int_{\square_{ij}} \right) (u_I)_x v_x = \frac{k_j}{6h_i} (u_1 + u_4 - u_2 - u_3)(v_1 + v_4 - v_2 - v_3).
$$

(5.2)

Using the Taylor expansion we see that u_4 can be expanded at the center O at $(i + \frac{1}{2}, j + \frac{1}{2})$ to yield

$$
u_4 := u(i + 1, j + 1) = u_o + \left(\frac{h_i}{2} \frac{\partial}{\partial x} + \frac{k_j}{2} \frac{\partial}{\partial y} \right) u_o + \frac{1}{2} \left(\frac{h_i}{2} \frac{\partial}{\partial x} + \frac{k_j}{2} \frac{\partial}{\partial y} \right)^2 u_o
$$

$$
+ \frac{1}{3!} \left(\frac{h_i}{2} \frac{\partial}{\partial x} + \frac{k_j}{2} \frac{\partial}{\partial y} \right)^3 u_o + \frac{1}{4!} \left(\frac{h_i}{2} \frac{\partial}{\partial x} + \frac{k_j}{2} \frac{\partial}{\partial y} \right)^4 \tilde{u},
$$

where $\tilde{u} = u(\xi, \eta)$ for some $(\xi, \eta) \in \square_{ij}$. The other terms, u_k, $k = 1, 2, 3$, can be derived similarly. Using these expansions we have

$$
u_1 + u_4 - u_2 - u_3 = h_ik_j u_{xxyy} + b_1h_ik_j^3 \tilde{u}_{yyyy}
$$

$$
+ b_2h_i^2k_j^2 \tilde{u}_{axxy} + b_3h_i^2k_j \tilde{u}_{axxy} + b_4h_i^4 \tilde{u}_{axxx},
$$

where b_l's are constants independent of h_i and k_j. Substituting the above equation into (5.2) we have

$$
\left(\int \int_{S_0} - \int \int_{S_0} \right) (u_I)_x v_x = \sum_{i,j \in I_S} \left(\int \int_{\square_{ij}} - \int \int_{\square_{ij}} \right) (u_I)_x v_x
$$

$$
= \sum_{i,j \in I_S} \frac{k_j}{6h_i} \left(h_ik_j (u_{xxyy})_o + \frac{k_j^4}{4 \cdot 4!} \tilde{u}_{yyyy} + \sum_{\ell=1}^{4} b_{\ell}h_i^\ell k_j^{4-\ell} \tilde{u}_{x^{4-\ell}} \right)
$$

$$
\times (v_1 + v_4 - v_2 - v_3).
$$

(5.3)
Lemma 5.1. Let $A4$–$A6$ hold. The there exists the error bound,

$$\left\| \sum_{ij \in I_S} k^2_j (u_{xy})_o (v_1 + v_4 - 2v_2) \right\| \leq Ch^2 \|v\|_1, \quad \forall v \in V_h^0.$$ (5.4)

Lemma 5.2. Let $A4$–$A6$ hold. Then we have

$$\left\| \left(\int_{S_0} - \int_{S_0} \right) (u_I)_y v_x \right\| \leq C \left\{ h^{1.5} + h^3 \|u_{xyyy}\|_0, 0, S + T_0 \right\} \times \|v\|_1, \quad v \in V_h^0,$$

where

$$T_0 = \sqrt{\sum_{ij \in I_S} h^2_i u_{xxx}^2_{0, ij}} + h \sqrt{\sum_{ij \in I_S} h^2_i u_{xxxy}^2_{0, ij}}$$

$$+ h^2 \sqrt{\sum_{ij \in I_S} h_i u_{xyy}^2_{0, ij}} + h^{1.5} \sqrt{\sum_{ij \in I_S} \frac{k^2_j}{h_i} u_{xyyy}^2_{0, ij}}$$

(5.5)

and $\tilde{u} = u(\xi, \eta)$ form some $(\xi, \eta) \in \Box_{ij}$.

The proof Lemmas 5.1 and 5.2 is provided in [7]. Similarly, we can prove the following lemma (see [7]).

Lemma 5.3. Let $A4$–$A6$ hold. For $\sigma = \frac{1}{2} + \mu$ and $\nu = -\frac{3}{2} + \mu$, $\mu > 0$, putting $r = (p + 1) \mu \leq 1.5$, we have

$$\left\| \left(\int_{S_0} - \int_{S_0} \right) (u_I)_y v_x \right\| \leq C \left\{ h^r + h^3 \|u_{xyyy}\|_0, 0, S + T_0^* \right\} \times \|v\|_1, \quad v \in V_h^0,$$

(5.6)

where

$$T_0^* = \sqrt{\sum_{ij \in I_S} h^2_i u_{xxx}^2_{0, ij}} + h \sqrt{\sum_{ij \in I_S} h^2_i u_{xxxy}^2_{0, ij}}$$

$$+ h^2 \sqrt{\sum_{ij \in I_S} h_i u_{xyy}^2_{0, ij}} + \sqrt{\sum_{ij \in I_S} \frac{h^4_i}{k_i} u_{xyyy}^2_{0, ij}}$$

(5.7)

and $\tilde{u} = u(\xi, \eta)$ for some $(\xi, \eta) \in \Box_{ij}$.

Theorem 5.1. Let $A4$–$A6$ hold, and assume that the exact solution, u, is four-times continuously differentiable on S, except the x-derivatives of u at $x = 0$. Let $\sigma = \frac{1}{2} + \mu$, $\mu > 0$ and $r = (p + 1) \mu \leq 1.5$. Then, we have

$$T = \sup_{v \in V_h^0} \frac{1}{\|v\|_1} \left\| \left(\int_{S_0} - \int_{S_0} \right) \nabla u_I \nabla v \right\| = O(h^r).$$

(5.8)

Proof. We have from Lemmas 5.2 and 5.3,

$$\left\| \left(\int_{S_0} - \int_{S_0} \right) \{ (u_I)_x v_x + (u_I)_y v_y \} \right\| \leq C \left\{ h^r + h^{1.5} + h^3 \|u_{xyyy}\|_0, 0, S + T_0^* \right\} \|v\|_1$$

(5.9)

for $v \in V_h^0$, where

We will first estimate the bound on the first term on the right-hand side of (5.3). This is given in the following lemma.
\[
\tilde{T}_0^\sigma = \sqrt{\sum_{ij \in IS} \left(h_i^2 \tilde{u}_{xxxx} \right)^2_{0,\Box_{ij}}} + h \sqrt{\sum_{ij \in IS} \left(h_i^2 \tilde{u}_{xxyy} \right)^2_{0,\Box_{ij}}} + h^2 \sqrt{\sum_{ij \in IS} \left(h_i \tilde{u}_{xxyy} \right)^2_{0,\Box_{ij}}} \\
+ h^{1.5} \sqrt{\sum_{ij \in IS} \left(\frac{k_i}{h_i} \tilde{u}_{yyyy} \right)^2_{0,\Box_{ij}}} + \sqrt{\sum_{ij \in IS} \left(\frac{h_i}{k_j} \tilde{u}_{yyyy} \right)^2_{0,\Box_{ij}}}
\] (5.10)

Obviously, we have from \(\sigma > \frac{1}{2} \)

\[
h^r + h^{1.5} + h^3 \| \tilde{u}_{yyyy} \|_{0,S} \leq C h^r. \]

(5.11)

It was proved in [6] that

\[
\sqrt{\sum_{ij \in IS} \left(h_i^3 \tilde{u}_{xxxx} \right)^2_{0,\Box_{ij}}} + \sqrt{\sum_{ij \in IS} \left(h_i^2 \tilde{u}_{xxyy} \right)^2_{0,\Box_{ij}}} + h^2 \sqrt{\sum_{ij \in IS} \left(h_i \tilde{u}_{xxyy} \right)^2_{0,\Box_{ij}}} \leq C h^{1.5}. \]

(5.12)

Let us now consider the bounds for the last two terms, denoted by \(I^{1/2} \) and \(II^{1/2} \) respectively, on the right hand side of (5.10). Since \(u_{yyyy} \in C(S) \), we obtain

\[
I := h^3 \sum_{ij \in IS} \left(\frac{k_j}{h_i} \tilde{u}_{yyyy} \right)^2_{0,\Box_{ij}} = h^3 \sum_{ij \in IS} \int \int \frac{k_j}{h_i} \tilde{u}_{yyyy} \leq C h^3 \sum_{ij \in IS} \frac{k_j}{h_i} \]

(5.13)

Since

\[
\sum_{i=1}^{N} \frac{1}{h_i} \leq C \frac{1}{h^{p+1}},
\]

we have

\[
\sum_{i=1}^{N} \frac{1}{h_i} \leq C \frac{1}{h^2} \ln \frac{1}{h} \quad \text{for } p = 1
\]

and

\[
\sum_{i=1}^{N} \frac{1}{h_i} \leq C \frac{1}{h^2} \quad \text{for } p \neq 1.
\]

Then, we have

\[
I \leq C h^3 \left(\sum_{i=1}^{N} \frac{1}{h_i^6} \right) \left(\sum_{i=1}^{N} \frac{1}{h_i} \right) \leq C h^8 \frac{1}{h^2} \ln \frac{1}{h} \leq C h^6 \ln \frac{1}{h}. \]

(5.14)

Moreover, we have

\[
II := \sum_{ij \in IS} \left(\frac{h_i^3}{k_j} \tilde{u}_{xxxx} \right)^2_{0,\Box_{ij}} \leq \sum_{ij \in IS} \int \int \frac{h_i^3}{k_j} \tilde{u}_{xxxx} \leq C \sum_{ij \in IS} \frac{h_i^3}{k_j} \tilde{u}_{xxxx} \leq C h^8 \left(\sum_{i=1}^{N} \frac{1}{h_i} \right) \left(\sum_{j=1}^{N} \frac{1}{k_j} \right). \]

(5.15)

Next, for \(r \leq 1.5 \) we obtain

\[
\sum_{i=1}^{N} \frac{1}{k_j} \leq C \frac{1}{h^2} (\ln \frac{1}{h}), \quad \text{we obtain from (5.15) and (5.16),}
\]

\[
\sum_{i=1}^{N} \frac{1}{h_i} \leq C \frac{1}{h^2} (\ln \frac{1}{h}).
\]

Since \(\sum_{i=1}^{N} \frac{1}{k_j} \leq C \frac{1}{h^2} (\ln \frac{1}{h}) \), we obtain from (5.15) and (5.16),
\[II \leq C h^{3+2r} \left(\frac{1}{h} \ln \frac{1}{h} \right)^2. \] (5.17)

Combining (5.9)–(5.12), (5.14) and (5.17) gives the desired result (5.8). This completes the proof of Theorem 5.1. \(\square\)

Remark 5.1. In [7], the FDM is extended to other elliptic equations with Neumann and Robin boundary conditions. Numerical experiments, displaying a computed convergence rate of order \(O(h^{1.85})\), are also presented in [7] to support the theoretical \(O(h^{1.5})\)-order superconvergence rate obtained in this paper.

Acknowledgements

We are grateful to Professors T. Yamamoto, R. Beauwens and the anonymous referees for their valuable comments and suggestions on this paper.

References