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Note

Every Planar Graph Is 5-Choosable
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We prove the statement of the title, which was conjectured in 1975 by V. G.
Vizing and, independently, in 1979 by P. Erdos, A. L. Rubin, and H. Taylor.
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A list coloring of a graph G is an assignment of colors to the vertices
such that adjacent vertices get distinct colors and such that each vertex v
receives a color in a prescribed list L(v) of colors. G is k-choosable if such
a coloring always exists provided that each L(v) has k colors.

In 1975 Vizing raised the question whether every planar graph is
5-choosable (see [2]). ErdGs et al. [1] conjectured that every planar
graph is 5-choosable, but not necessarily 4-choosable. Recently, Voigt [3]
described planar graphs that are not 4-choosable. In this paper we prove
that they are always 5-choosable. The trick is to find an appropriate exten-
sion. The proof is probably the simplest proof of the S-color theorem for
planar graphs.

THEOREM. Let G be a near-triangulation; i.e., G is a planar graph which
has no loops or multiple edges and which consists of a cycle C:v,v,---v,v,
and vertices and edges inside C such that each bounded face is bounded by
a triangle. Assume that v, and v, are colored 1 and 2, respectively, and that
L(v) is a list of at least three colors if ve C— {v, v,} and at least five colors
if ve G— C. Then the coloring of v, and v, can be extended to a list coloring
of G.

Proof (by induction on the number of vertices of G). If p=3and G=C
there is nothing to prove. So we proceed to the induction step.
If C has a chord v;v;, where 2<i<j—2<p—-1 (v,,;=v,), then we
apply the induction hypothesis to the cycle v v,---v,0;0,,,---v, and its
interior and then to v;v,v;,,---v;_,v; and its interior. So we can assume

that C has no chord.
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Let v, uy, us, .., 4, v, be the neighbors of v, in that clockwise order
around v,. As the interior of C is triangulated, G contains the path
P:vuyuy---u,v, ;. As Cis chordless, Pu(C—v,) is a cycle C'. Let x,
be two distinct colors in L(v,)\{1}. Now define L'(»;)= L(u,)\{x, y} for
1<i<m and L'(v)=L(v) if v is a vertex of G not in {u, uy, ..., Uy}
Then we apply the induction hypothesis to C’ and its interior and the new
list L’. We complete the coloring by assigning x or y to v, such that v, and
v, get distinct colors. ||

REFERENCES

1. P. Erpos, A. L. RubiN, aND H. TayvrLor, Choosability in graphs, in “Proceedings,
West Coast Conference on Combinatorics, Graph Theory and Computing, Arcata, CA,
Sept. 5-7, 1979,” Congr. Numer. 26.

2. T. Jensen anD B. Tort, Graph coloring problems, monograph, to appear.

3. M. VoicT, List colourings of planar graphs, Discrete Math. 120 (1993), 215-219.



