Note

Every toroidal graph without adjacent triangles is \((4, 1)^*\)-choosable

Baogang Xu\(^a\),\(^1\), Haihui Zhang\(^a\),\(^b\)

\(^a\)School of Mathematics and Computer Science, Nanjing Normal University, Nanjing 210097, China
\(^b\)Department of Mathematics, Huaiyin Teachers College, Huaian 223001, China

Received 18 December 2003; received in revised form 4 December 2005; accepted 7 April 2006

Available online 5 September 2006

Abstract

In this paper, a structural theorem about toroidal graphs is given that strengthens a result of Borodin on plane graphs. As a consequence, it is proved that every toroidal graph without adjacent triangles is \((4, 1)^*\)-choosable. This result is best possible in the sense that \(K_7\) is a non-\((3, 1)^*\)-choosable toroidal graph. A linear time algorithm for producing such a coloring is presented also.

\(\text{© 2006 Elsevier B.V. All rights reserved.}\

MSC: 05C15; 05C78

Keywords: Triangle; Choosability; Toroidal graph; Linear algorithm

1. Introduction

All graphs considered are finite and simple. A torus is a closed surface (compact, connected 2-manifold without boundary) that is a sphere with a unique handle, and a toroidal graph is a graph embedable in the torus. For a toroidal graph \(G\), we still use \(G\) to denote an embedding of \(G\) in the torus.

Let \(G = (V, E, F)\) be a toroidal graph, where \(V, E\) and \(F\) denote the sets of vertices, edges and faces of \(G\), respectively. We use \(N_G(v)\) and \(d_G(v)\) to denote the set and number of vertices adjacent to a vertex \(v\), respectively, and use \(\delta(G)\) to denote the minimum degree of \(G\). A face of an embedded graph is said to be incident with all edges and vertices on its boundary. Two faces are adjacent if they share a common edge. The degree of a face \(f\) of \(G\), denoted also by \(d_G(f)\), is the length of the closed walk bounding \(f\) in \(G\). When no confusion may occur, we write \(N(v), d(v), d(f)\) instead of \(N_G(v), d_G(v), d_G(f)\). A \(k\)-vertex (or \(k\)-face) is a vertex (or face) of degree \(k\), a \(k^-\)-vertex (or \(k^-\)-face) is a vertex (or face) of degree at most \(k\), and a \(k^+\)-vertex (or \(k^+\)-face) is a vertex (or face) of degree at least \(k\). For \(f \in F(G)\), we write \(f = [u_1u_2 \ldots u_n]\) if \(u_1, u_2, \ldots, u_n\) are the vertices clockwise lying on the boundary of \(f\). An \(n\)-face \([u_1u_2u_3 \ldots u_n]\) is called an \((m_1, m_2, \ldots, m_n)\)-face if \(d(u_i) = m_i\) for \(i = 1, 2, \ldots, n\). An \(n\)-circuit is a circuit with exactly \(n\) edges.

In [7], Lebesgue proved a structural theorem about plane graphs that asserts that every 3-connected plane graph contains a vertex of given properties (see of [5, Theorem 2]). There are many analogous results appeared since then [1–3,5,10,14]. In this paper, we consider the structure of toroidal graphs, and prove a Lebesgue type theorem that strengthens a result given by Borodin in [2].

\(1\) Supported by NSFC 10371055.

\(E\)-mail addresses: baogxu@njnu.edu.cn (B. Xu), hhzhang79@163.com (H. Zhang).

0166-218X/S - see front matter \(\text{© 2006 Elsevier B.V. All rights reserved.}\

doi:10.1016/j.dam.2006.04.042
Theorem 1. Let G be a connected toroidal graph. Then, one of the following holds:

1. G contains two adjacent 3-faces.
2. $\delta(G) < 4$.
3. G contains two adjacent 4-vertices.
4. G contains a (4, 5, 5)-face.

A list assignment of G is a function L that assigns a list $L(v)$ of colors to each vertex $v \in V(G)$. An L-coloring with impropriety d for integer $d \geq 0$, or simply an (L, d)-coloring, of G is a mapping ϕ that assigns a color $\phi(v) \in L(v)$ to each vertex $v \in V(G)$ such that ϕ has at most d neighbors colored with $\phi(v)$. For integers $m \geq d \geq 0$, a graph is called (m, d)-choosable, if G admits an (L, d)-coloring for every list assignment L with $|L(v)| = m$ for all $v \in V(G)$. An $(m, 0)$-choosable graph is simply called m-choosable.

The notion of list improper coloring was introduced independently by Škrekovski [11] and Eaton and Hull [4]. They proved that every plane graph without adjacent triangles is 4-choosable. This conjecture is still open.

The distances of two triangles T_1 and T_2 is defined to be the length of a shortest path connecting a vertex of T_1 to a vertex of T_2. Lam et al. [6] showed that every plane graph without triangles of distance less than 2 is $(4m, m)$-choosable. Xu [13,14] proved that every planar graph is $(3, 2)$-choosable and every outerplanar graph is $(2, 2)$-choosable. In [8], it was proved that every plane graph without 4-circuits and 5-circuits for some $l \in \{5, 6, 7\}$ is $(3, 1)$-choosable.

Theorem 2. Let G be a toroidal graph without adjacent triangles. Then G is $(4, 1)$-choosable.

Since K_7 is a toroidal graph, and it is not $(L, 1)$-choosable for $L(v) = \{1, 2, 3\}$ for each of its vertices v, Theorem 2 is best possible in this sense.

In Section 2, we give the proofs of our theorems. According to the proof of Theorem 2, a linear time algorithm is given in Section 3.

2. Proofs of the theorems

Proof of Theorem 1. Assume to the contrary that the theorem is false. Let G be a connected toroidal graph with the properties that G contains no adjacent 3-faces, $\delta(G) \geq 4$, every 4-vertex is adjacent to only 5^+-vertices, and every 3-face is not a (4, 5, 5)-face. The Euler’s formula $|V| + |F| - |E| \geq 0$ can be rewritten in the following form:

$$\sum_{v \in V(G)} \left\{ \frac{3 \cdot d_G(v)}{10} - 1 \right\} + \sum_{f \in F(G)} \left\{ \frac{d_G(f)}{5} - 1 \right\} \leq 0. \hspace{1cm} (1)$$

Let ω be a weight on $V(G) \cup F(G)$ by defining $\omega(v) = (3 \cdot d(v)/10) - 1$ if $v \in V(G)$, and $\omega(f) = (d(f)/5) - 1$ if $f \in F(G)$. Then the total sum of the weights is no more than zero. To prove Theorem 1, we will introduce some rules to transfer weights between the elements of $V(G) \cup F(G)$ so that the total sum of the weights is kept constant while the transferring is in progress. However, once the transferring is finished, we can show that the resulting weight ω' satisfying $\sum_{x \in V(G) \cup F(G)} \omega'(v) > 0$. This contradiction to (1) will complete the proof.

Our transferring rules are as follows:

1. A 4-vertex transfers $\frac{1}{20}$ to each incident 3-face or 4-face.
2. A 5^+-vertex transfers $\frac{7}{20}$ to each incident 3-face.
3. A 5-vertex transfers $\frac{1}{20}$ to each incident 4-face.
4. A 6^+-vertex transfers $\frac{11}{20}$ to each incident 4-face.
Let \(v \) be a \(k \)-vertex of \(G \). Since \(G \) contains no adjacent 3-faces, \(v \) is incident with at most \(\lfloor k/2 \rfloor \) 3-faces. If \(k = 4 \), then by (R1), \(\omega'(v) \geq \omega(v) - \frac{1}{20} \cdot 4 = 0 \). If \(k = 5 \) and there is no 3-face incident with \(v \), then by (R3),
\[
\omega'(v) \geq \omega(v) - \frac{1}{20} \cdot 5 = \frac{10 - 5}{20} > 0.
\] (2)
If \(k = 5 \) and there are 3-faces incident with \(v \), then the number of 3-faces incident with \(v \) is at most two, and thus
\[
\omega'(v) \geq \omega(v) - \frac{7}{20} \cdot 2 - \frac{3}{20} \cdot 3 = 0 \quad \text{by (R2) and (R3).}
\]
If \(k \geq 6 \) and there is no 3-face incident with \(v \), then by (R4),
\[
\omega'(v) \geq \omega(v) - \frac{11}{120} \cdot k = (25k - 120)/120 > 0.
\]
If \(k \geq 6 \) and there are 3-faces incident with \(v \), then
\[
\omega'(v) \geq \omega(v) - \frac{7}{40} \cdot \left(\left\lfloor \frac{k}{2} \right\rfloor - \frac{11}{120} \cdot \left(k - \left\lfloor \frac{k}{2} \right\rfloor \right) \right) \geq \frac{20k - 120}{120} \geq 0.
\] (3)

Let \(f \) be an \(h \)-face of \(G \). If \(h = 3 \), then by our choice of \(G \), either \(f \) is incident with three \(5^+ \)-vertices and thus by (R2)
\[
\omega'(f) = \omega(f) + \frac{7}{40} \cdot 3 > 0
\] (4)
or \(f \) is incident with a unique 4-vertex and at least one \(6^+ \)-vertex and thus by (R1) and (R2),
\[
\omega'(f) = \omega(f) + \frac{1}{20} + \frac{7}{40} \cdot 2 = 0.
\]
If \(h = 4 \), since \(f \) is incident with four \(4^+ \)-vertices, then \(\omega'(f) \geq \omega(f) + \frac{1}{20} \cdot 4 = 0 \) while \(f \) is incident with no \(6^+ \)-vertex, and
\[
\omega'(f) = \omega(f) + \frac{1}{20} \cdot 3 + \frac{11}{120} = \frac{1}{24} > 0 \quad \text{while } f \text{ is incident with a } 6^+\text{-vertex.}
\] (5)
If \(h \geq 5 \), then \(\omega'(f) = \omega(f) > 0 \).
Now, we get that \(\omega'(x) \geq 0 \) for each \(x \in V(G) \cup F(G) \). It follows that \(0 \leq \sum_{x \in V(G) \cup F(G)} \omega'(x) = \sum_{x \in V(G) \cup F(G)} \omega(x) \leq 0 \).
If \(\sum_{x \in V(G) \cup F(G)} \omega'(x) > 0 \), we are done. Assume that \(\sum_{x \in V(G) \cup F(G)} \omega'(x) = 0 \). Then, by (3), \(G \) contains no \(7^+ \)-vertices, and every \(6^+ \)-vertex is incident with three \(3^+ \)-faces and three \(4^+ \)-faces, but this implies that \(\omega'(f') > 0 \) for every \(4^+ \)-face \(f' \) incident with this \(6^+ \)-vertex by (5). Therefore, we may assume that \(G \) contains no \(6^+ \)-vertices, and hence every \(3^+ \)-face \(f'' \) is incident with three \(5^+ \)-vertices that indicates \(\omega(f'') > 0 \) by (4). So, \(G \) contains no 3-faces. But this indicates that \(G \) contains no vertices of degree 5 by (2), and hence \(G \) is 4-regular. This contradicts to the choice of \(G \), and ends the proof. \(\square \)

Proof of Theorem 2. Assume to the contrary. Let \(G \) be a counterexample with the fewest vertices, i.e., \(G \) is a non-\((4, 1)^* \)-choosable toroidal graph without adjacent triangles, but any proper subgraph of \(G \) is \((4, 1)^* \)-choosable. It is certain that we may assume that \(G \) is connected.

Let \(L \) be a list assignment of \(G \) satisfying \(|L(v)| = 4 \) for all \(v \in V(G) \) such that \(G \) is not \((L, 1)^* \)-choosable.
We will show that \(\delta(G) \geq 4 \), and \(G \) contains neither two adjacent 4-vertices nor a \((4,5,5)\)-face. This contradiction to Theorem 1 will complete our proof.
If \(\delta(G) < 4 \), let \(v \) be a \(3^- \)-vertex of \(G \). Then, \(G - v \) is \((4, 1)^* \)-choosable by the choice of \(G \). Since in any \((L, 1)^* \)-coloring of \(G - v \), there must exist a color in \(L(v) \) that is not used by any neighbors of \(v \), any \((L, 1)^* \)-coloring of \(G - v \) can be extended to an \((L, 1)^* \)-coloring of \(G \), a contradiction.
If \(G \) contains two adjacent 4-vertices, say \(u \) and \(v \), then by the choice of \(G \), \(G - \{u, v\} \) is \((4, 1)^* \)-choosable. By the same argument as above, we get an \((L, 1)^* \)-coloring of \(G \), a contradiction also.
If \(G \) contains a \((4, 5, 5)\)-face \(f = [xyz] \), we may assume that \(d(x) = 4 \) and \(d(y) = d(z) = 5 \). Let \(H = G - \{x, y, z\} \).
By the choice of \(G \), \(H \) admits an \((L, 1)^* \)-coloring \(\phi \). For \(w \in \{x, y, z\} \), let \(L'(w) = L(w) \setminus \{\phi(u) | u \in N_H(w)\} \). Then, \(|L'(x)| \geq 2 \), \(|L'(y)| \geq 1 \) and \(|L'(z)| \geq 1 \). If \(L'(y) = L'(z) \), then color \(y \) and \(z \) with the same color \(\gamma \) in \(L'(y) \) and color \(x \) with a color in \(L'(x) \setminus \{\gamma\} \). If \(L'(y) \neq L'(z) \), then color \(y \) with a color \(x \in L'(y) \setminus L'(z) \), color \(z \) with a color in \(L'(z) \), and color \(x \) with an arbitrary color in \(L'(x) \). In either case, we get an \((L, 1)^* \)-coloring of \(G \). This contradiction completes the proof of Theorem 2. \(\square \)
3. A linear time algorithm

In [9], Mohar presented a linear time algorithm that for every fixed surface S and a given graph G, either finds an embedding of G in S or returns a subgraph of G that is a subdivision of a Kuratowski graph for S.

From the proof of Theorem 2, we give here a linear time algorithm that, for an arbitrary toroidal graph G without adjacent triangles, produces an $(L, 1)^*$-coloring for any fixed list assignment L with $|L(v)| = 4$ for each $v \in V(G)$.

The strategy of our algorithm is as follows. First, we repeatedly locate a 3^--vertex, or a pair of adjacent 4-vertices, or three vertices incident with a $(4, 5, 5)$-face until no 3^+-vertices remain. At the end of the above process, what remains is a subgraph of maximum degree at most 2, say H. Then, we color H with the given color lists greedily, and extend the coloring step by step to whole G as shown in the proof of Theorem 2.

$(4, 1)^*$.Coloring Toroidal Graphs without Adjacent Triangles

Input: An embedding of a connected toroidal graph G without adjacent triangles, and a list assignment L with $|L(v)| \geq 4$ for each $v \in V(G)$.

Output: An $(L, 1)^*$-coloring ϕ of G.

Step 0: Set $i = 0$, $G_0 = G$, $V_0 = \{v|d(v) \leq 3\}$, $E_0 = \{uv|u, v \notin V_0$ and $d(u) = d(v) = 4\}$, and $F_0 = \{f = [uvw]\}$ $[u, v, w] \notin V_0 \cup V(E_0)$ and $d(u) + d(v) + d(w) = 14$.

Step 1: If $\delta(G_i) \leq 2$, color G_i with a proper coloring ϕ greedily, and goto Step 3.

Step 2: If $V_0 \neq \emptyset$, choose $v \in V_0$, set $S_i := \{v\}$ and reset $V_0 := V_0 \setminus \{v\}$;

else if $E_0 \neq \emptyset$, choose $uv \in E_0$, set $S_i := \{u, v\}$ and reset $E_0 := E_0 \setminus \{uv\}$;

else choose an $f = [uvw] \in F_0$, set $S_i := \{u, v, w\}$ and reset $F_0 := F_0 \setminus \{f\}$.

 Reset $G_i := G_i - S_i$, $i := i + 1$, and add the new 3^+-vertices, adjacent 4-vertices, and $(4, 5, 5)$-face of G_i into V_0, E_0 and F_0, respectively. Goto Step 1.

Step 3: If $i = 0$, output ϕ.

Step 4: If $S_{i-1} = \{u\}$, color u by $\phi(u) \in L(u)\setminus \{\phi(x)|x \in V(G_i), ux \in E(G)\}$;

else if $S_{i-1} = \{u, v\}$, color u by $\phi(u) \in L(u)\setminus \{\phi(x)|x \in V(G_i), ux \in E(G)\}$, and color v by $\phi(v) \in L(u)\setminus \{\phi(x)|x \in V(G_i), ux \in E(G)\}$;

else $S_{i-1} = \{u, v, w\}$, choose $\phi(u)$, $\phi(v)$ and $\phi(w)$ as described in the proof of Theorem 2 for u, v and w, respectively.

 Reset $i := i - 1$ and goto Step 3.

 From the proof of Theorem 2, one can easily verify that this algorithm works correctly. Now, we analyze its complexity. Given an embedding of a toroidal graph without adjacent triangles, it takes at most $O(n)$ time to produce V_0, E_0 and F_0 in Step 0. Each time Step 2 is executed, the vertices in S_i are removed, and V_0, E_0 and F_0 can be modified in constant time after removing the vertices in S_i. So, it totally takes linear time to run Step 2. After that the algorithm takes another $O(n)$ time to run Step 4 for finding a color for every vertex. Thus, this algorithm is a linear time algorithm.

 Combined with Mohar’s algorithm for finding an embedding of a toroidal graph in the torus, for any given graph G, we can, in linear time, either find an $(L, 1)^*$-coloring for an arbitrary list assignment L with $|L(v)| = 4$ for every $v \in V(G)$ or conclude that G is either a non-toroidal graph or a toroidal graph that contains adjacent triangles.

 Conclusion: Although we have an example K_7 that is non-(4, 1)*-choosable toroidal graph, but K_7 has too much triangles compared with its order. It seems that the condition “without adjacent triangles” is far away from a tight condition for (4, 1)*-choosable plane graphs. Finally, we propose a question analogue to the conjecture of Lam et al.

 Question: Is it true that every plane graph without adjacent triangles is (3, 1)*-choosable?

Acknowledgements

The authors appreciate the referees sincerely for their helpful comments.

References