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Abstract 

An equivalence graph is a disjoint union of cliques. For a graph G let eq(G) be the minimum number of equivalence 
subgraphs of G needed to cover all edges of G. We call eq( G) the equivalence covering number of G. It was shown in [ 81 
that computing the equivalence covering number is NP-hard, even when restricted to graphs in which no two triangles have 
a vertex in common. We show that the equivalence covering number for splitgraphs can be approximated within an additive 
constant 1. We also show that obtaining the exact value of the equivalence number of a splitgraph is an NP-hard problem. 
Using a similar method we also show that it is NP-complete to decide whether the equivalence coveting number of a graph 
is 3, even for graphs with maximum degree 6 and with maximum clique number 4. 
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1. Introduction 

Definition 1. An equivalence graph is a vertex dis- 
joint union of cliques. An equivalence covering of a 
graph G is a family of equivalence subgraphs of G such 
that every edge of G is an edge of at least one member 
of the family. The equivalence covering number of G, 
denoted by eq( G), is the minimum cardinality of all 
equivalence coverings of G. 

The equivalence covering number was studied first 
in [ 21. Interesting bounds for the equivalence covering 
number in terms of maximal degree of the complement 
were obtained in [ I]. In this note we mainly consider 
the computation of the equivalence covering number 
of splitgraphs. We first show an approximation within 
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an additive constant 1. Then we show that obtaining 
the exact value is an NP-hard problem. 

Definition 2. A graph G = (YE) is a split graph, if 
there is a partition V = S + K of its vertex set into a 
stable set S and a clique K. 

There is no restriction on edges between vertices of 
S and vertices of K. Notice that in general the parti- 
tion into S and K need not be unique. Splitgraphs are 
exactly those graphs which, together with their com- 
plements, are chordal. For more general information 
on splitgraphs we refer to [ 41. 

2. Approximation 

In this section we show that the equivalence cover- 
ing number of a splitgraph can be approximated within 
an additive constant 1. Consider a partition V = S + K 
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of the vertex set into an independent set S and a clique 
K. For a vertex x in K let 6(x) be the number of 
neighbors of n in S. Let A = max{S(x) 1 x E K}. 

Lemma 3. eq( G) 2 A. 

Proof. Consider a vertex x E K with 6(x) = A and its 
neighbors in S. This is a Kl,d induced subgraph of G. 
This induced subgraph has equivalence covering num- 
ber A, since each equivalence graph in the covering 
can have only one edge. This-proves the lemma. 0 

Lemma 4. eq(G) < A + 1. 

Proof. Let yt,... , yt be the vertices of S. For each 
vertex x in K consider an arbitrary ordering of its 
neighbors in S. For i = 1, . . . , A define the equivalence 
graph Gi as follows. Gi is the disjoint union of cliques 
Wi,j = {vi} U {X E K 1 the ith neighbor of x is yj}, 
forj = l,..., t. It is easy to check that the cliques 
Wi,j forj = l,..., t are all disjoint. We define one 
more equivalence graph GA+, consisting of the clique 
K. Obviously, this gives an equivalence covering with 
A + 1 equivalence graphs. El 

The approximation given in Lemma 4 can be com- 
puted in linear time. This proves the following theo- 
rem. 

Theorem 5. There exists a linear time algorithm to 
compute an equivalence covering of a splitgraph G 
with at most eq( G) + 1 equivalence graphs. 

Remark 6. Notice that, in case the splitgraph is a 
threshold graph (see, e.g., [4] ), its equivalence num- 
ber can easily be computed exactly. 

3. NP-completeness 

We use a reduction from EDGE-COLORING. 
The chromatic index of a graph G, denoted by 

x’(G), is the number of colors required to color the 
edges of the graph in such a way that no two adjacent 
edges have the same color. By Vizing’s theorem (see, 
e.g., [ 31) the chromatic index is either d or d + 1, 
where d is the maximum vertex degree. 

Notice that, in general, the chromatic index is an up- 

perbound for the equivalence covering number. Also, 
these parameters coincide for triangle-free graphs. It 
follows that, for bipartite graphs, the equivalence cov- 
ering number equals the maximum degree. Unfortu- 
nately, for splitgraphs the bound is not of much use, 
which is illustrated by a clique. 

It is by now well known that it is NP-complete 
to determine the chromatic index of an arbitrary 
graph [ 561. Holyer [ 51 obtained the following result. 

Theorem 7. It is NP-complete to determine whether 
the chromatic index of a cubic graph is 3 or 4. 

Consider a cubic graph G and construct a graph H as 
follows. For each edge e of G introduce a new vertex 
xe and make this adjacent to the two endvertices of e. 
We call xe the special vertex at e. 

Lemma 8. ,y’( G) = 3 w eq( H) = 3. 

Proof. First assume x’(G) = 3. Notice that eq( H) 3 
3 since H has an induced Ki,3 subgraph. (If p is a 

vertex of G incident with edges e, f and g in G, then 
{p, x, , xf, xg} induces a K1.3 in H.) Consider an edge 
coloring of G with three colors. For each color class 
define an equivalence graph as follows. For each edge 
in that color class, the triangle consisting of the edge 
and the special vertex at that edge is a clique of the 
equivalence graph. It is easy to check that this de- 
fines an equivalence covering with three equivalence 
graphs. 

Now assume H has an equivalence covering with 
three equivalence graphs HI, H2 and H3. We claim 
that no triangle of G is contained in a clique of one 
of the equivalence graphs. Assume, by way of contra- 
diction, that (a, 6, c} is a triangle of G which is con- 
tained in a clique of HI. Vertex a is adjacent to three 
special vertices, say xi, x2 and x3. Then each of the 
edges (a, Xi) is contained in a clique of an equiva- 
lence graph, and no two are in a clique of the same 
equivalence graph. Without loss of generality we may 
assume that (a, Xi) is contained in a clique of Hi. But 
then HI cannot contain the triangle {a, 6, c} since xt 
has degree two and hence the clique containing a and 
xi can have at most two vertices of G. 

We can color the edges of G as follows. If the edge e 
is contained in a clique of Hi then we give it color i. (If 
e is contained in cliques of more than one equivalence 
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graph, we can choose one arbitrarily). By the remark 
above this gives a correct edge-coloring with three 
colors. 0 

Corollary 9. It is NP-complete to decide whether the 
equivalence covering number of a graph with maxi- 
mum degree < 6 and without a copy of K4 equals 3. 

Given a cubic graph G we construct a splitgraph G* 
as follows. The vertex set of G* is split into a clique 
K and an independent set S. The vertices of K are the 
vertices of G. For each edge e of G introduce two new 
vertices x,,t and X,,Z which are both made adjacent 
to the endvertices of e. For each nonedge f of G, we 
introduce one new vertex yf which is made adjacent 
to the endvertices of f. We again call the new vertices, 
which are the vertices of S, special vertices. 

Lemma 10. X’(G) = 3 H eq(G*) = n + 2, where n 
is the number of vertices of G. 

Proof. The proof goes along the same lines as the 
proof of Lemma 8. Assume G can be edge-colored 
with three colors. Notice that eq(G*) 2 n + 2 since 
KI,~+~ is an induced subgraph. Since G is cubic, n is 
even. We can construct an equivalence covering for G* 
as follows. First, consider an edge-coloring of K with 
n - 1 colors (see [ 31) . For each color class, define an 
equivalence graph as follows. For each edge in K in 
that color class, add one special vertex at that edge and 
let that triangle be a clique of the equivalence graph. 

Next consider an edge-coloring of G with three col- 
ors. For each color class define an equivalence graph 
as follows. For each edge in that color class add the 
other special vertex and let that triangle be a clique of 
the equivalence graph. 

Clearly, this defines an equivalence covering of G* 
with n + 2 equivalence graphs. 

Assume that G* has an equivalence covering with 
n + 2 equivalence graphs. Consider a vertex a E K. 
This vertex a is adjacent to n + 2 special vertices, and 
each of the edges between a and a special vertex de- 
fines a unique equivalence graph. It follows that no 
triangle of G can be contained in a clique of an equiva- 
lence graph. We thus obtain a correct edge-coloring of 
G in the same manner as in the proof of Lemma 8. 0 

Corollary 11. It is NP-complete to decide whether 

the equivalence covering number of a splitgraph, in 
which every vertex of the independent set has degree 
two,isAorA+l,whereA=max{S(x) jx~ K} 
for a given partition of the vertex set into a clique K 
and an independent set S. 

4. Concluding remarks 

In this note we considered the equivalence cover- 
ing number for splitgraphs. We show that it is NP- 
complete to determine the equivalence covering num- 
ber of a splitgraph. Another complexity result was ob- 
tained in [ 81. In this paper the authors show that the 
equivalence covering number is NP-complete even for 
graphs in which no two triangles have a vertex in com- 
mon. 

Related problems are the clique covering number, 
and the clique partition number. The clique cover- 
ing number is the minimum number of cliques which 
cover all the edges of the graph. It was shown in [9] 
that the clique covering number can be computed in 
linear time for chordal graphs. The clique partition 
number is the minimum number of cliques such that 
every edge is contained in exactly one clique. De- 
termining the clique partition number is NP-hard for 
chordal graphs [ lo]. It would be interesting to deter- 
mine the complexity of the computation of the clique 
partition number for split graphs. It should be re- 
marked however that it is unlikely that a polynomial 
time algorithm exists, due to the following [ 11,7]. 
Consider the following splitgraph G. Take a clique 
with m2 + m + 1 - r vertices and an independent set 
with r vertices. Make every vertex of the independent 
set adjacent to every vertex of the clique. (G is some- 
times denoted as K,,,z+,,,+, \Kr.) If2 < r < m2+m+l 
then the clique partition number of G is at least m2 +m 
with equality holding if and only if a projective plane 
of order m exists and r = m + 1. 
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