1.4 Model estimation: IRLS:

1. Score function and information matrix:

Let the responses $Y_{i}, i=1, \cdots, n$, have the distribution in the exponential family, taking the form

$$
f\left(y_{i}, \theta_{i}, \phi\right)=\exp \left\{\frac{\left[y_{i} \theta_{i}-b\left(\theta_{i}\right)\right]}{a(\phi)}+c\left(y_{i}, \phi\right)\right\}
$$

with link function

$$
g\left(\mu_{i}\right)=g\left[E\left(Y_{i}\right)\right]=\eta_{i}=x_{i} \beta=\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\cdots+\beta_{p} x_{i p}
$$

where

$$
x_{i}=\left[\begin{array}{llll}
x_{i 1} & x_{i 2} & \cdots & x_{i p}
\end{array}\right] .
$$

Thus, the log-likelihood function for the ith observation is

$$
l_{i}(\beta)=\log \left\{f\left(\beta, \phi \mid y_{i}\right)\right\}=\frac{\left[y_{i} \theta_{i}-b\left(\theta_{i}\right)\right]}{a(\phi)}+c\left(y_{i}, \phi\right)
$$

Since

$$
\begin{gathered}
b^{\prime}\left(\theta_{i}\right)=\mu_{i} \\
\Rightarrow \frac{\partial \theta_{i}}{\partial \mu_{i}}=\frac{1}{\left(\partial \mu_{i} / \partial \theta_{i}\right)}=\frac{1}{b^{\prime \prime}\left(\theta_{i}\right)} \\
\Rightarrow \frac{\partial l_{i}}{\partial \beta_{j}}=\frac{\partial l_{i}}{\partial \theta_{i}} \frac{\partial \theta_{i}}{\partial \mu_{i}} \frac{\partial \mu_{i}}{\partial \eta_{i}} \frac{\partial \eta_{i}}{\partial \beta_{j}}=\frac{\left[y_{i}-b^{\prime}\left(\theta_{i}\right)\right]}{a(\phi)} \cdot \frac{1}{V_{i}} \cdot \frac{\partial \mu_{i}}{\partial \eta_{i}} \cdot x_{i j}
\end{gathered}
$$

for $j=1, \cdots, p$, where we denote $V_{i}=b^{\prime \prime}\left(\theta_{i}\right)$. Define

$$
w_{i}(\beta)=\frac{1}{V_{i}\left(\frac{\partial \eta_{i}}{\partial \mu_{i}}\right)^{2}}
$$

Then,

$$
\begin{aligned}
\frac{\partial l_{i}}{\partial \beta_{j}} & =\frac{\left[y_{i}-b^{\prime}\left(\theta_{i}\right)\right]}{a(\phi)} \cdot \frac{1}{V_{i}} \cdot \frac{\partial \mu_{i}}{\partial \eta_{i}} \cdot x_{i j}=\left(\frac{y_{i}-\mu_{i}}{a(\phi)}\right) \cdot \frac{1}{V_{i}\left(\frac{\partial \eta_{i}}{\partial \mu_{i}}\right)^{2}} \cdot\left(\frac{\partial \eta_{i}}{\partial \mu_{i}}\right)^{2} \cdot \frac{\partial \mu_{i}}{\partial \eta_{i}} \cdot x_{i j} \\
& =\left(\frac{y_{i}-\mu_{i}}{a(\phi)}\right) \cdot w_{i}(\beta) \cdot \frac{\partial \eta_{i}}{\partial \mu_{i}} \cdot x_{i j}
\end{aligned}
$$

since

$$
\frac{\partial \eta_{i}}{\partial \mu_{i}} \cdot \frac{\partial \mu_{i}}{\partial \eta_{i}}=\frac{1}{\left(\partial \mu_{i} / \partial \eta_{i}\right)} \cdot \frac{\partial \mu_{i}}{\partial \eta_{i}}=1
$$

The likelihood function is

$$
\prod_{i=1}^{n} f\left(\beta, \phi \mid y_{i}\right)
$$

and

$$
l=\log \left[\prod_{i=1}^{n} f\left(\beta, \phi \mid y_{i}\right)\right]=\sum_{i=1}^{n} l_{i}(\beta)
$$

Thus, the score function is

$$
U_{j}(\beta)=\frac{\partial l}{\partial \beta_{j}}=\sum_{i=1}^{n} \frac{\partial l_{i}}{\partial \beta_{j}}=\sum_{i=1}^{n}\left(\frac{y_{i}-\mu_{i}}{a(\phi)}\right) \cdot w_{i}(\beta) \cdot \frac{\partial \eta_{i}}{\partial \mu_{i}} \cdot x_{i j} .
$$

Further,

$$
\begin{gathered}
\frac{\partial^{2} l_{i}}{\partial \beta_{r} \partial \beta_{j}}=\frac{\partial\left(\partial l_{i} / \partial \beta_{j}\right)}{\partial \beta_{r}}=\frac{\partial\left[\left(\frac{y_{i}-\mu_{i}}{a(\phi)}\right) \cdot w_{i}(\beta) \cdot \frac{\partial \eta_{i}}{\partial \mu_{i}} \cdot x_{i j}\right]}{\partial \beta_{r}} \\
=\frac{\partial\left[\frac{y_{i}-\mu_{i}}{a(\phi)}\right]}{\partial \beta_{r}} \cdot w_{i}(\beta) \cdot \frac{\partial \eta_{i}}{\partial \mu_{i}} \cdot x_{i j}+\frac{y_{i}-\mu_{i}}{a(\phi)} \cdot \frac{\partial\left[w_{i}(\beta) \cdot \frac{\partial \eta_{i}}{\partial \mu_{i}} \cdot x_{i j}\right]}{\partial \beta_{r}} .
\end{gathered}
$$

and

$$
\begin{aligned}
& \quad-E\left(\frac{\partial^{2} l_{i}}{\partial \beta_{r} \partial \beta_{j}}\right) \\
& =\frac{1}{a(\phi)} \cdot \frac{\partial \mu_{i}}{\partial \beta_{r}} \cdot w_{i}(\beta) \cdot \frac{\partial \eta_{i}}{\partial \mu_{i}} \cdot x_{i j} \\
& =\frac{1}{a(\phi)} \cdot \frac{\partial \eta_{i}}{\partial \beta_{r}} \cdot \frac{\partial \mu_{i}}{\partial \eta_{i}} \cdot w_{i}(\beta) \cdot \frac{\partial \eta_{i}}{\partial \mu_{i}} \cdot x_{i j} \\
& =\frac{1}{a(\phi)} \cdot w_{i}(\beta) \cdot x_{i j} \cdot \frac{\partial \eta_{i}}{\partial \beta_{r}} \cdot\left(\frac{\partial \mu_{i}}{\partial \eta_{i}} \cdot \frac{\partial \eta_{i}}{\partial \mu_{i}}\right) \\
& =\frac{1}{a(\phi)} \cdot w_{i}(\beta) \cdot x_{i j} \cdot x_{i r}
\end{aligned}
$$

since

$$
E\left[\frac{Y_{i}-\mu_{i}}{a(\phi)}\right]=\frac{E\left(Y_{i}-\mu_{i}\right)}{a(\phi)}=0
$$

and

$$
\frac{\partial \mu_{i}}{\partial \eta_{i}} \cdot \frac{\partial \eta_{i}}{\partial \mu_{i}}=1
$$

Therefore,

$$
I_{r j}(\beta)=-E\left(\frac{\partial^{2} l}{\partial \beta_{r} \partial \beta_{j}}\right)=-\sum_{i=1}^{n} E\left(\frac{\partial^{2} l_{i}}{\partial \beta_{r} \partial \beta_{j}}\right)=\sum_{i=1}^{n} \frac{1}{a(\phi)} \cdot w_{i}(\beta) \cdot x_{i j} \cdot x_{i r}
$$

2. Fisher's scoring method:

The Fisher's scoring method is

$$
\left[\boldsymbol{I}\left(\widehat{\boldsymbol{\beta}}_{t}\right) \widehat{\boldsymbol{\beta}}_{t+1}\right]_{r}=\left[\boldsymbol{I}\left(\widehat{\boldsymbol{\beta}}_{t}\right) \widehat{\boldsymbol{\beta}}_{t}\right]_{r}+\boldsymbol{U}_{r}\left(\widehat{\boldsymbol{\beta}}_{t}\right), \boldsymbol{r}=\mathbf{1}, \mathbf{2}, \cdots, \boldsymbol{p}
$$

where $\left[I\left(\widehat{\beta}_{t}\right) \widehat{\boldsymbol{\beta}}_{t+1}\right]_{r}$ and $\left[I\left(\widehat{\beta}_{t}\right) \widehat{\boldsymbol{\beta}}_{t}\right]_{r}$ are the rth component of $I\left(\widehat{\boldsymbol{\beta}}_{t}\right) \widehat{\boldsymbol{\beta}}_{t+1}$ and $I\left(\widehat{\boldsymbol{\beta}}_{t}\right) \widehat{\boldsymbol{\beta}}_{t}$, respectively. Then,

$$
\begin{aligned}
{\left[I\left(\widehat{\boldsymbol{\beta}}_{t}\right) \widehat{\boldsymbol{\beta}}_{t}\right]_{r} } & =\sum_{j=1}^{p} I_{r j}\left(\widehat{\boldsymbol{\beta}}_{t}\right) \widehat{\boldsymbol{\beta}}_{t j} \\
& =\sum_{j=1}^{p} \sum_{i=1}^{n} \frac{w_{t i} x_{i r} x_{i j} \widehat{\boldsymbol{\beta}}_{t j}}{a(\phi)} \\
& =\frac{1}{a(\phi)} \sum_{i=1}^{n} w_{t i} x_{i r}\left(\sum_{j=1}^{p} x_{i j} \widehat{\boldsymbol{\beta}}_{t j}\right) \\
& =\frac{1}{a(\phi)} \sum_{i=1}^{n} w_{t i} x_{i r} \widehat{\eta}_{t i}
\end{aligned}
$$

where

$$
\begin{gathered}
I_{r j}\left(\widehat{\beta}_{t}\right)=\sum_{i=1}^{n} \frac{w_{t i} x_{i r} x_{i j}}{a(\phi)}, w_{t i}=w_{i}\left(\widehat{\boldsymbol{\beta}}_{t}\right), \\
\widehat{\eta}_{t i}=\sum_{j=1}^{p} x_{i j} \widehat{\boldsymbol{\beta}}_{t j}=x_{i 1} \widehat{\boldsymbol{\beta}}_{t 1}+x_{i 2} \widehat{\boldsymbol{\beta}}_{t 2}+\cdots+x_{i p} \widehat{\boldsymbol{\beta}}_{t p} .
\end{gathered}
$$

Similarly,

$$
\left[I\left(\widehat{\beta}_{t}\right) \widehat{\boldsymbol{\beta}}_{t+1}\right]_{r}=\frac{1}{a(\phi)} \sum_{i=1}^{n} w_{t i} x_{i r} \widehat{\eta}_{(t+1) i}=\frac{1}{a(\phi)} \sum_{i=1}^{n} w_{t i} x_{i r}\left(\sum_{j=1}^{p} x_{i j} \widehat{\boldsymbol{\beta}}_{(t+1) j}\right)
$$

where

$$
\widehat{\boldsymbol{\eta}}_{(t+1) i}=\sum_{j=1}^{p} x_{i j} \widehat{\boldsymbol{\beta}}_{(t+1) j}=x_{i 1} \widehat{\boldsymbol{\beta}}_{(t+1) 1}+x_{i 2} \widehat{\boldsymbol{\beta}}_{(t+1) 2}+\cdots+x_{i p} \widehat{\boldsymbol{\beta}}_{(t+1) p} .
$$

Further,

$$
U_{r}\left(\widehat{\beta}_{t}\right)=\sum_{i=1}^{n}\left[\left(\frac{y_{i}-\mu_{i}}{a(\phi)}\right) \cdot w_{i}(\beta) \cdot \frac{\partial \eta_{i}}{\partial \mu_{i}} \cdot x_{i r}\right]_{\beta=\widehat{\beta}_{t}}
$$

$$
=\frac{1}{a(\phi)} \sum_{i=1}^{n} w_{t i} x_{i r}\left[\left(y_{i}-\mu_{i}\right) \cdot \frac{\partial \eta_{i}}{\partial \mu_{i}}\right]_{\beta=\widehat{\beta}_{t}}
$$

The right side of Fisher's scoring equation is

$$
\begin{gathered}
{\left[I\left(\widehat{\beta}_{t}\right) \widehat{\beta}_{t}\right]_{r}+U_{r}\left(\widehat{\beta}_{t}\right)} \\
=\frac{1}{a(\phi)} \sum_{i=1}^{n} w_{t i} x_{i r} \widehat{\eta}_{t i}+\frac{1}{a(\phi)} \sum_{i=1}^{n} w_{t i} x_{i r}\left[\left(y_{i}-\mu_{i}\right) \cdot \frac{\partial \eta_{i}}{\partial \mu_{i}}\right]_{\beta=\widehat{\beta}_{t}} \\
=\frac{1}{a(\phi)} \sum_{i=1}^{n} w_{t i} x_{i r}\left\{\widehat{\eta}_{t i}+\left[\left(y_{i}-\mu_{i}\right) \cdot \frac{\partial \eta_{i}}{\partial \mu_{i}}\right]_{\beta=\widehat{\beta}_{t}}\right\} \\
=\frac{1}{a(\phi)} \sum_{i=1}^{n} w_{t i} x_{i r} z_{t i}
\end{gathered}
$$

while the left side of Fisher's scoring equation is

$$
\left[I\left(\widehat{\beta}_{t}\right) \widehat{\boldsymbol{\beta}}_{t+1}\right]_{r}=\frac{1}{a(\phi)} \sum_{i=1}^{n} w_{t i} x_{i r} \widehat{\eta}_{(t+1) i}
$$

where

$$
z_{t i}=\widehat{\eta}_{t i}+\left[\left(y_{i}-\mu_{i}\right) \cdot \frac{\partial \eta_{i}}{\partial \mu_{i}}\right]_{\beta=\widehat{\beta}_{t}}
$$

Thus, Fisher's scoring equation can be reduced to

$$
\begin{gathered}
{\left[I\left(\widehat{\beta}_{t}\right) \widehat{\boldsymbol{\beta}}_{t+1}\right]_{r}=\left[I\left(\widehat{\beta}_{t}\right) \widehat{\boldsymbol{\beta}}_{t}\right]_{r}+U_{r}\left(\widehat{\beta}_{t}\right)} \\
\Leftrightarrow \frac{1}{a(\phi)} \sum_{i=1}^{n} w_{t i} x_{i r}\left(\sum_{j=1}^{p} x_{i j} \widehat{\boldsymbol{\beta}}_{(t+1) j}\right)=\frac{1}{a(\phi)} \sum_{i=1}^{n} w_{t i} x_{i r} z_{t i} \\
\Leftrightarrow \sum_{i=1}^{n} w_{t i} x_{i r}\left(z_{t i}-\sum_{j=1}^{p} x_{i j} \widehat{\boldsymbol{\beta}}_{(t+1) j}\right)=0
\end{gathered}
$$

Note:
$z_{t i}$ depends only on $\widehat{\boldsymbol{\beta}}_{t}$.

3. Iterated reweighted least squares (IRLS):

The above equation can be expressed in matrix form,

$$
X^{t} W_{t}\left(z_{t}-X \widehat{\boldsymbol{\beta}}_{t+1}\right)=0
$$

where

$$
X=\left[\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 p} \\
x_{21} & x_{22} & \cdots & x_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n 1} & x_{n 2} & \cdots & x_{n p}
\end{array}\right], W_{t}=\left[\begin{array}{cccc}
w_{t 1} & 0 & \cdots & 0 \\
0 & w_{t 2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & w_{t n}
\end{array}\right], z_{t}=\left[\begin{array}{c}
z_{t 1} \\
z_{t 2} \\
\vdots \\
z_{t n}
\end{array}\right] .
$$

Then, the maximum likelihood estimate at the $(t+1)$ th iteration is

$$
\begin{gathered}
X^{t} W_{t} z_{t}=X^{t} W_{t} X \widehat{\boldsymbol{\beta}}_{t+1} \\
\Leftrightarrow \widehat{\boldsymbol{\beta}}_{t+1}=\left(X^{t} W_{t} X\right)^{-1} X^{t} W_{t} z_{t}
\end{gathered}
$$

Note that $\widehat{\boldsymbol{\beta}}_{t+1}$ can be thought as the weighted least squares estimate with weight matrix W_{t}, covariate matrix X and the response vector z_{t}. Thus, $\widehat{\boldsymbol{\beta}}_{t}, t=0,1,2, \cdots$ can be generated by

$$
\begin{gathered}
\widehat{\boldsymbol{\beta}}_{1}=\left(X^{t} W_{\mathbf{0}} X\right)^{-1} X^{t} W_{0} z_{0} \\
\widehat{\boldsymbol{\beta}}_{2}=\left(X^{t} W_{1} X\right)^{-1} X^{t} W_{1} Z_{1} \\
\vdots \\
\widehat{\boldsymbol{\beta}}_{t+1}=\left(X^{t} W_{t} X\right)^{-1} X^{t} W_{t} Z_{t}
\end{gathered}
$$

Note that the weight matrix W_{t} is reweigthed (changed) at each iteration. Therefore, we also refer to $\widehat{\boldsymbol{\beta}}_{\boldsymbol{t}}, \boldsymbol{t}=\mathbf{0}, \mathbf{1}, \mathbf{2}, \cdots$, as iterated reweighted least squares estimate.

