2.2 Binomial distribution:

The binomial distribution can arise from two ways.

1. $X_{1} \sim P\left(\lambda_{1}\right), X_{2} \sim P\left(\lambda_{2}\right), X_{1}$ and X_{2} are independent. Then

$$
X_{1}+X_{2} \sim P\left(\lambda_{1}+\lambda_{2}\right) .
$$

The conditional probability

$$
P\left(X_{1}=y \mid X_{1}+X_{2}=m\right)=\binom{m}{y} \pi^{y}(1-\pi)^{m-y}
$$

is distributed as $B(m, \pi)$, where

$$
\pi=\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} .
$$

2. $Z_{i} \sim B(1, \pi), i=1, \cdots, m$, are independent. Then,

$$
Y=\sum_{i=1}^{m} Z_{i} \sim B(m, \pi)
$$

