2.4 Measuring the goodness of fit:

Goodness of fit:

Let the log-likelihood function

$$
\begin{aligned}
l(\beta) & =\sum_{i=1}^{n}\left\{\log \left[\binom{m_{i}}{y_{i}}\right]+y_{i} \cdot \log \left(\pi_{i}\right)+\left(m_{i}-y_{i}\right) \cdot \log \left(1-\pi_{i}\right)\right\} \\
& =\sum_{i=1}^{n}\left\{\log \left[\binom{m_{i}}{y_{i}}\right]+y_{i} \cdot \log \left(\frac{\mu_{i}}{m_{i}}\right)+\left(m_{i}-y_{i}\right) \cdot \log \left(\frac{m_{i}-\mu_{i}}{m_{i}}\right)\right\}
\end{aligned}
$$

Then, the deviance function is

$$
D\left(y_{1}, y_{2}, \cdots, y_{n} \mid \widetilde{\mu}_{1}, \widetilde{\mu}_{2}, \cdots, \widetilde{\mu}_{n}\right)=2 \sum_{i=1}^{n}\left[y_{i} \log \left(\frac{y_{i}}{\widetilde{\mu}_{i}}\right)+\left(m_{i}-y_{i}\right) \log \left(\frac{m_{i}-y_{i}}{m_{i}-\widetilde{\mu}_{i}}\right)\right]
$$

where $\widetilde{\mu}_{1}=\left[m_{i} \pi_{i}\right]_{\beta=\widehat{\beta}}$.

Important result:
Let the null model involves p parameters, $g\left(\mu_{i}\right)=x_{i} \beta$ and $\widetilde{\mu}_{i}=g^{-1}\left(x_{i} \widehat{\beta}\right), i=$ $1,2, \cdots, n$. Then,

$$
D\left(y_{1}, y_{2}, \cdots, y_{n} \mid \widetilde{\mu}_{1}, \widetilde{\mu}_{2}, \cdots, \widetilde{\mu}_{n}\right) \xrightarrow{m_{i} \rightarrow \infty} \chi_{n-p}^{2}
$$

under the following assumptions:

1. The observations are distributed independently, according to the binomial distribution. The case of over-dispersion is not considered.
2. The sample size n is fixed, $m_{i} \rightarrow \infty$ and in fact $m_{i} \pi_{i}\left(1-\pi_{i}\right) \rightarrow \infty$ for $i=$ $1,2, \cdots, n$.
