3.2 Likelihood functions:

1. Poisson distribution

The distribution of a Poisson random variable \boldsymbol{Y} is

$$
P(Y=y)=\frac{\exp (-\mu) \mu^{y}}{y!}, y=0,1,2, \cdots
$$

The cumulant generating function is

$$
\kappa_{Y}=\mu[\exp (t)-1] .
$$

Thus,

$$
E(Y)=\kappa_{T}^{\prime}(0)=[\mu \cdot \exp (t)]_{t=0}=\mu
$$

and

$$
E(\boldsymbol{Y})=\boldsymbol{\kappa}_{T}^{\prime \prime}(0)=[\boldsymbol{\mu} \cdot \exp (t)]_{t=0}=\boldsymbol{\mu}
$$

2. The Poisson log-likelihood function

The Poisson log-likelihood function for independent $Y_{i} \sim P\left(\mu_{i}\right), i=1, \cdots, n$, is

$$
l\left(\mu_{1}, \mu_{2}, \cdots, \mu_{n}\right) \propto \sum_{i=1}^{n}\left[y_{i} \cdot \log \left(\mu_{i}\right)-\mu_{i}\right]
$$

where $E\left(Y_{i}\right)=\mu_{i}$. The deviance function is

$$
\begin{aligned}
& D\left(y_{1}, y_{2}, \cdots, y_{n} \mid \widetilde{\mu}_{1}, \widetilde{\mu}_{2}, \cdots, \widetilde{\mu}_{n}\right) \\
= & 2 \sum_{i=1}^{n}\left[y_{i} \log \left(\frac{y_{i}}{\widetilde{\mu}_{i}}\right)-\left(y_{i}-\widetilde{\mu}_{i}\right)\right] \\
= & 2 \sum_{i=1}^{n}\left[y_{i} \log \left(\frac{y_{i}}{\widetilde{\mu}_{i}}\right)\right]-2 \sum_{i=1}^{n}\left(y_{i}-\widetilde{\mu}_{i}\right)
\end{aligned}
$$

where $\widetilde{\mu}_{i}=g^{-1}\left(x_{i} \widehat{\beta}\right)$ is the estimate of $E\left(Y_{i}\right)=\mu_{i}$.
Note:
If a constant term (the intercept) is included in the model, it can be shown that

$$
\sum_{i=1}^{n}\left(y_{i}-\widetilde{\mu}_{i}\right)=0
$$

Thus, the deviance function can be reduced to

$$
D\left(y_{1}, y_{2}, \cdots, y_{n} \mid \widetilde{\mu}_{1}, \widetilde{\mu}_{2}, \cdots, \widetilde{\mu}_{n}\right)=2 \sum_{i=1}^{n}\left[y_{i} \log \left(\frac{y_{i}}{\widetilde{\mu}_{i}}\right)\right] .
$$

Note:

The deviance function is closely related to Pearson's statistic. Since

$$
\frac{y_{i}-\widetilde{\mu}_{i}}{\widetilde{\mu}_{i}}=\varepsilon_{i} \Leftrightarrow \frac{y_{i}}{\widetilde{\mu}_{i}}=1+\varepsilon_{i} \Leftrightarrow y_{i}=\widetilde{\mu}_{i}\left(1+\varepsilon_{i}\right)
$$

then

$$
\begin{aligned}
y_{i} \cdot \log \left(\frac{y_{i}}{\widetilde{\mu}_{i}}\right)-\left(y_{i}-\widetilde{\mu}_{i}\right) & =\widetilde{\mu}_{i}\left(1+\varepsilon_{i}\right) \cdot \log \left(\frac{y_{i}}{\widetilde{\mu}_{i}}\right)-\widetilde{\mu}_{i} \varepsilon_{i} \\
& =\widetilde{\mu}_{i}\left[\left(1+\varepsilon_{i}\right) \cdot \log \left(1+\varepsilon_{i}\right)-\varepsilon_{i}\right] \\
& =\widetilde{\mu}_{i}\left[\left(1+\varepsilon_{i}\right)\left(\varepsilon_{i}-\frac{\varepsilon_{i}^{2}}{2}+\cdots\right)-\varepsilon_{i}\right] \\
& =\widetilde{\mu}_{i}\left[\left(\varepsilon_{i}-\frac{\varepsilon_{i}^{2}}{2}+\varepsilon_{i}^{2}-\frac{\varepsilon_{i}^{3}}{2}+\cdots\right)-\varepsilon_{i}\right] \\
& =\widetilde{\mu}_{i}\left(\frac{\varepsilon_{i}^{2}}{2}+\cdots\right) \\
& \approx \frac{\widetilde{\mu}_{i} \varepsilon_{i}^{2}}{2}
\end{aligned}
$$

where

$$
\log \left(1+\varepsilon_{i}\right)=\varepsilon_{i}-\frac{\varepsilon_{i}^{2}}{2}+\cdots
$$

Thus, as the model includes the intercept,

$$
\begin{aligned}
D\left(y_{1}, y_{2}, \cdots, y_{n} \mid \widetilde{\mu}_{1}, \widetilde{\mu}_{2}, \cdots, \widetilde{\mu}_{n}\right) & =2 \sum_{i=1}^{n}\left[y_{i} \log \left(\frac{y_{i}}{\widetilde{\mu}_{i}}\right)\right] \\
& \approx \sum_{i=1}^{n} \frac{\left(y_{i}-\widetilde{\mu}_{i}\right)^{2}}{\widetilde{\mu}_{i}} \\
& \equiv \text { Pearson's statistic }
\end{aligned}
$$

Note:
σ^{2} can be estimated by

$$
\widetilde{\sigma}^{2}=\frac{1}{n-p} \sum_{i=1}^{n} \frac{\left(y_{i}-\widetilde{\mu}_{i}\right)^{2}}{\widetilde{\mu}_{i}}=\frac{X^{2}}{n-p^{\prime}},
$$

X^{2} is the sum of Pearson's residuals, i.e., Pearson's statistic.

