3.2 Likelihood functions:

1. Poisson distribution
The distribution of a Poisson random variable Y is

P(Y = y) =M,y —012
The cumulant generating function is
Ky = ulexp(t) — 1].
Thus,
E(Y) =k7(0) = [n-exp(D)]i=0 = 1
and

E(Y) =k7(0) = [u- exp(t)]¢=0 = 1.

2. The Poisson log-likelihood function
The Poisson log-likelihood function for independent Y,~P(u;),i = 1,--,n, is
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where E(Y;) = u;. The deviance function is
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where fI; = g !(x;B) is the estimate of E(Y;) = p,.
Note:
If a constant term (the intercept) is included in the model, it can be shown that

n
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Thus, the deviance function can be reduced to
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Note:



The deviance function is closely related to Pearson’s statistic. Since
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Thus, as the model includes the intercept,
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= Pearson’s statistic
Note:

02 can be estimated by

n ~
— 1 (i —H)*  X?
g~ = P = )
n-pL K n-p

X? is the sum of Pearson’s residuals, i.e., Pearson’s statistic.




