7.2 Independent observations:

1. Covariance functions
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Y, 251
v=|"2], 60 == *?|,covr) = o2V )
v, o

where 6% may be unknown and V(i) is a matrix of known functions. Suppose
Y1, Yy, -, Y, areindependentand Var(Y;) dependsonlyon u;. Then,
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Note:
Vi(),V5(), -, V,,(-) may be taken to be identical.

2. Quasi-likelihood functions
\Motivating example:\
Let Y~N(u, c?). Then, the log-likelihood function is
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Thus, the score function for u is
di(p) y—-p

Note that
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U has the following properties in common with the score function:
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Then, since the score function is the derivative of the log-likelihood function, the
integral
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if exists, should behave like a log-likelihood function for u under the very mild
assumptions. Q(u) is referred to as the quasi-likelihood, or as the log quasi-
likelihood for u based on the data y.

Let V(u) = u. Then, Var(Y) = 6%u and
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= ?[y-log(u) —ut+ty—y-logy)l

xy-log(p) —n
= log — likelihood of Poisson radom variable

Let V(u) = u?. Then, Var(Y) = o?u? and

Then
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= log — likelihood of gamma radom variable
Note that for a gamma random variable Y with E(Y) = u, then Var(Y) = u?.

The quasi-likelihood function for the complete data is the sum of the individual
contributions
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The quasi-deviance function corresponding to a single observation is
Yy —
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which does not depend on ¢?2.

3. Parameter estimation
Let the vector of parameters f related to the dependence of u on the covariate
x. Therefore, we can write p; = u;(B). Thus
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The covariance matrix of U(B) is
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B |~ ?DtV_lD.

I1(B) = Cov[U(B)] = —El

Note:
Under the usual limiting conditions on the eigenvalues of I(f), the asymptotic
variance-covariance matrix of f is

Cov(B) = I1"1(B) = *(D'V-1D) 1,
Thatis, I(B) plays the same role as the Fisher’s information for ordinary likelihood
functions.

To obtain the parameter estimate B, the Fisher’s scoring method is
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where
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To estimate &2, we can use the following statistic
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where [i; arethe estimates of p; basedon B and X? is the generalized Pearson
statistic.

Note:
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Thus, the estimator similar to the sample variance is
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The statistic 6> can be obtained by replacing u; by Ji;.



