I. Written (80%)

1. (40%) Suppose we have the following data for the survival times of ovarian cancer patients: T: treatment group; C: control group.

Subject	Survival	Censor indicator	Group	Age
	time			
I	156	1	T	66
II	1040	0	T	38
III	59	1	T	72
IV	421	0	С	53
V	329	1	T	43
VI	769	0	С	59

- (a) Calculate the Kaplan-Meier estimate for the data and find the survival functions evaluated at 250.
- (b) Fit the above data by the Weibull distribution with density function

$$f(t) = 2\lambda t \cdot exp(-\lambda t^2)$$

Find the MLE of λ and find the estimated survival function.

- (c) With $\alpha=0.05$, please perform the log-rank and Wilcoxon tests to test if there is the group effect.
- (d) Suppose the variable Age is the variable of interest. Using proportional hazards model, derive the partial likelihood and find the score function.
- 2. (20%) Suppose the independent data Y_1, Y_2, \cdots, Y_n have the mean μ_i and the variance function. $V_i(\mu_i)$
- (a) If $\mu_i=\mu$, $V_i(\mu)=\mu^3$, find the quasi-likelihood function and maximized quasi-likelihood estimate for μ .
- (b) If $\mu_i = \mu, V_i(\mu) = \mu(1 \mu)$, find the quasi-likelihood function and maximized quasi-likelihood estimate for μ .
- 3. (20%) Suppose $Y_1 \sim P(\mu_1)$ and $Y_2 \sim P(\mu_2)$ and we are interested in the ratio $\varphi = \frac{\mu_1}{\mu_2}$. Please find the conditional likelihood estimate.

II. Computer (120%)

- 1. (40%) For the data set in problem 1 of written part,
 - (a) (20%) Find the survival estimates in (a) and (b) of the problem and plot the survival functions.
 - (b) (10%) Test the group effect using Log-rank test, Wilcoxon test, and the proportional hazards models at lpha=0.05.
 - (c) (10%) Fit the following proportional hazards models $\lambda_0(t) \cdot exp(\eta)$ and please make conclusions at $\alpha=0.05$:
 - $\eta = \beta \cdot Age$
 - $\eta = \beta \cdot \text{Group}$
- 2. (30%) The following table refers to a prospective study of maternal drinking and congenital malformations. Observations were recorded on presence or absence of congenital organ malformations.

	Alcohol Consumption (Ave. no. Drinks per Day)						
Malformation	0	< 1	1 – 2	3 – 5	>= 6		
Absent	17066	14464	788	126	37		
Present	48	38	5	1	1		

- (a) (20%) Please use proportional odds model to analyze the above data and make conclusions with $\, \alpha = 0.05 . \,$
- (b) (10%) Please select the sensible models and make conclusions.
- 2. (50%) The following data are in many ways typical of social-science investigations, although the data concerns the behavior of lizards rather than humans.

			Т					
			Early		Mid – day		Late	
S	D (in)	H (ft)	G	0	G	0	G	0
	≤2	< 5	20	2	8	1	4	4
		≥5	13	0	8	0	12	0
Sun	> 2	< 5	8	3	4	1	5	3
		≥5	6	0	0	0	1	1
	≤2	< 5	34	11	69	20	18	10
		≥5	31	5	55	4	13	3
Shade	> 2	< 5	17	15	60	32	8	8
		≥5	12	1	21	5	4	4

G: Grahami lizard; O: Opalinus lizard;

S: sunny/shady; H: perch height; D: perch diameter; T: time of day.

- (a) (20%) Please analyze the data using both *logit and probit* links and make conclusions with $\alpha = 0.05$.
- (b) (10%) Please select the sensible models and make conclusions.
- (c) (10%) Please give the residual plots, including the one for Pearson residuals and the one for deviance residuals.
- (d) (10%) Please use the quasi-likelihood method with $V(\mu) = \mu$ and $V(\mu) = \mu(1-\mu)$, respectively, and compare the results with the ones given in (a).