Homework 7:

1. Suppose we have the following data for 3 populations:

<u> </u>	
	Observations
Population 1	(-2,5),(0,0),(-1,1)
Population 2	(0,6),(2,4),(1,2)
Population 3	(1,-2),(0,0),(-1,-4)

Please do the following:

- (a) Find the variance-covariance matrix and the correlation matrix for these variables.
- (b) Find the principal components by 80% criterion and also give the screeplot. Please not use the command "princomp".
- (c) For the data in all populations, please use Fisher's discrimination method to find \hat{a}_1 and \hat{a}_2 .
- (d) Find the error rate for the 9 observations based on \hat{a}_1 only.
- (e) Please find the smallest error rate for the above data as using K-means method with number of clusters equal to 3.
- 2. The density of the random variable having t-distribution with n degrees of freedom is

$$f(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-(n+1)/2},$$

where $\Gamma(\cdot)$ is the gamma function.

(a) Please write a program to do the following:

Input: degree of freedom and α

Output: $t_{n,\alpha}$.

- (b) Use the program in (a), generate the t-distribution table.
- 3. Please approximate the integral

$$\int_{1}^{2} \frac{1}{x} dx$$

by Simpson's method to do the following.

- (a) Please use 10 sub-intervals to approximate the integral.
- (b) Suppose S(N) is the value as using Simpson's method with N

sub-intervals. Find the small $\,N\,$ such that

 $|S(N) - 0.693147| \le 0.000001$,

where $\ 0.693147$ is the value of $\ log(2)$ to six decimal places.