Midterm

1. (Computing, 120\%)
(a) (25\%) Let

$$
G=\left[\begin{array}{ccc}
1 & -1 & 2 \\
-1 & 1 & 2 \\
2 & 2 & 2
\end{array}\right]
$$

Please write a program to compute:
(i) The eigenvalues and eigenvectors of G.
(ii) The determinant of G.
(iii) The solution of $G x=b$, where $b=\left(\begin{array}{lll}2 & 4 & 6\end{array}\right)^{t}$.
(iv) $3 G^{6}-2 G^{-4}+5 G^{t}$
(v) The row variances and column means of G.
(b) (25\%) Let

$$
f(x)=2 x^{2}+4 x^{-3}-6 x^{1 / 5}
$$

and

$$
\begin{gathered}
g(x)=20 \pi e^{-x^{2}}-5 \cos (x) \log (x) \\
\mathrm{x}=0.5,1, \cdots, 9.5,10
\end{gathered}
$$

Please write a program to plot the two functions with the following requirements:

- X-label is " x " while Y -label is "Mathematical Functions".
- The title of this plot is "The Plot of Different Functions".
- Use two different kind of point types for the two functions.
- Use two different kind of lines types for the two functions.
- The legend associated with the two functions.
(c) (25\%) Let $X_{1}, X_{2}, \cdots, X_{50} \xrightarrow{\text { i.i.d }} N\left(\mu, \sigma^{2}\right)$. Then, two estimators of μ^{2} / σ^{2} are

$$
T_{1}=\frac{50 \bar{X}^{2}}{49 S^{2}}
$$

and

$$
T_{2}=\frac{\bar{X}^{2}-1 / 50}{S^{2}}
$$

where \bar{X} and S^{2} are sample mean and sample variance, respectively. Please sample 50 data from $N(3,9)$. The sampling process is repeated 2000 times. Please write a program to do the following:
(i) Find the averages of the above two estimates.
(ii) Find the averages of the absolute differences between the above two estimates and the true value of the parameter.
(d) (25\%) Please use Newton's method to find the at least two roots of

$$
\begin{gathered}
x^{2}+y^{2}-2=0 \\
x^{2}-y=0
\end{gathered}
$$

with the stop criterion (error) equal to 0.00001 .
(e) (20\%) Please generate 100000 data from the standard normal random variable. Then, please write a program to find:
(i) the numbers of observations in the intervals,

$$
(-\infty, 3),[-3,-2.99), \cdots,[-0.01,0),[0,0.01), \cdots,[2.99,3),[3, \infty) .
$$

(ii) which intervals with the minimum and maximum number of observations.
2. (Statistics, 120\%)
(a) (30\%) Given that $X \sim N(1,9), Y_{1} \sim P$ Poisson(3) is a Poisson random variable with mean $3, Y_{2} \sim \operatorname{Binomial}(5,0.2)$ is a binomial random variable corresponding to 5 trials with the probability of success equal to 0.2 . Please compute
(i) $P(-5 \leq X \leq 8.5)$.
(ii) $P\left(Y_{1}<7\right)$.
(iii) $P\left(Y_{2}=0\right.$ or $Y_{2}=2$ or $\left.Y_{2}=10\right)$
(iv) $t_{7,0.01}$.
(v) Generate a sample of 1000 data from the uniform random variable taking values on $[-5,9]$.
(b) (20\%) The data were selected from each of three normal populations with equal variances. The data obtained follow.

Observation	Sample 1	Sample 2	Sample 3
1	37	39	33
2	35	38	36
3	35	39	35
4	31	41	36
5	37	43	40

At the $\alpha=0.05$ level of significance, find the p-value and test the null hypothesis that the three population means are equal?
(c) (30\%)
(i) The following data have been collected for a sample from a normal population

5	9	6	4	6	8	9	11

find 90% confidence interval for population mean μ and the p-value for testing

$$
H_{0}: \mu \geq 9 \text { vs. } H_{1}: \mu<9 .
$$

(ii) For the following data taken from two normal populations with equal variances.

Sample 1	25	26	47	46	45	21	33
Sample 2	43	59	60	74	66		

Find the t-statistic and the p-value for

$$
H_{0}: \mu_{1}-\mu_{2} \leq-15 \text { vs. } H_{1}: \mu_{1}-\mu_{2}>-15,
$$

where μ_{1} and μ_{2} are the means of population 1 and population 2 , respectively.
(iii) Consider the following data for two random samples taken from two normal populations with equal variances.

Sample 1	11	12	8	7	7	9
Sample 2	5	8	6	7	4	8

Consider the above data as the matched (paired) samples. Find the 85\% confidence interval for $\mu_{1}-\mu_{2}$ and the t-statistic for

$$
H_{0}: \mu_{1}-\mu_{2}=2 \text { vs. } H_{1}: \mu_{1}-\mu_{2} \neq 2,
$$

where μ_{1} and μ_{2} are the means of population 1 and population 2 , respectively.
(d) (20%)
(i) Please generate $\mathbf{5 0 0}$ data from a t distribution with the degree of
freedom equal to 2 . Please write a program to do the following:

- qq \mathbf{t} plot for the generated data with 2 degrees of freedom.
- qq normal plot for the generated data with : $\mu=2, \sigma^{2}=9$.

Put the above 2 plots in the same Figure.
(ii) Suppose we have the following data:

3	2	2	1	0
0	1	0	1	0
4	1	0	1	0
2	2	1	0	0

Test if the data is distributed as the Poisson distribution with mean equal to
0.7 (Poisson(0.7))) at $\alpha=0.05$.
(Hint: For $X \sim \operatorname{Poisson}(0.7), P(X \geq 4) \approx 0)$
(e) $\mathbf{(2 0 \%)}$) The results of a recent poll on the preference of voters regarding two candidates are shown below:

Candidate	Voters Surveyed	Voters Favoring This Candidate
A	400	192
B	450	225

Please construct a 95\% confidence interval for the difference between the preference for the two candidates $\mathbf{p}_{1}-\mathbf{p}_{2}$ and the p -value for

$$
H_{0}: p_{1}=p_{2} \text { vs. } H_{1}: p_{1} \neq p_{2}
$$

where p_{1} and p_{2} are the proportions of favoring candidate A and candidate B, respectively.

