2.3. Nonparametric methods

1. One-sample problem:

 X_1, X_2, \cdots, X_n are random variables with common distribution (not necessarily normal distribution). Suppose M is the median of the distribution. We want to test if $H_0: M = M_0$, where M_0 is some number. We now introduce the Wilcoxon sign rank test.

Wilcoxon sign rank test:

Let $Z_i=|X_i-M_0|$ and R_i is the rank of Z_i . Let $T^+=\sum_{(X_i-M_0)>0}R_i$ be the sum of all the ranks corresponding to $X_i-M_0>0$, while $T^-=\sum_{(X_i-M_0)<0}R_i$ is the sum of all the ranks corresponding to $X_i-M_0<0$.

Example:

 H_0 : $M = M_0 = 8$ and the following table:

X_i	7.1	13.5	5.2	4.2	6.4	10.4	5.7	5.4	6.3	7.5
$\boldsymbol{Z_i}$	0.9	5.5	2.8	3.8	1.6	2.4	2.3	2.6	1.7	0.5
R_i	2	10	8	9	3	6	5	7	4	1
Sign of	_	+	_	_	_	+	_	_	_	_
$X_i - 8$										

Then,

$$T^{+} = 10 + 6 = 16, T^{-} = 2 + 8 + 9 + 3 + 5 + 7 + 4 + 1 = 39.$$

The following are the Wilcoxon sign rank tests under three alternatives:

- 1. $H_0: M = M_0 \ vs. H_1: M < M_0 \Rightarrow T^+ \leq W_{n,\alpha}$ then reject H_0 , where $W_{n,\alpha}$ can be found by table.
- **2.** $H_0: M = M_0 \ vs. H_1: M > M_0 \Rightarrow T^- \le W_{n,\alpha}$ then reject H_0 .
- 3. $H_0: M = M_0 \ vs. H_1: M \neq M_0 \Rightarrow min(T^+, T^-) \leq W_{n,\alpha}$ then reject H_0 .

Note:

$$T^+ + T^- = \frac{n(n+1)}{2}$$
.

Example (continue):

Test H_0 : $M = M_0 = 8$ $vs. H_1$: M < 8, $\alpha = 0.05$. [solution]:

$$T^+ = 16, W_{10,0.05} = 11 \Longrightarrow T^+ > W_{10,0.05},$$

we do not reject H_0 .

Example (Splus):

s=c(7.1,13.5,5.2,4.2,6.4,10.4,5.7,5.4,6.3,7.5) wilcox.test(s,mu=8,alt="less") help(wilcox.test)

2. Two-samples problem:

 $X_1, X_2, \cdots, X_n \sim F_1$ and $Y_1, Y_2, \cdots, Y_m \sim F_2$, where F_1 and F_2 are some distributions. Let M_1 and M_2 be the medians of F_1 and F_2 , respectively. We want to test $H_0: M_1 = M_2$.

Wilcoxon rank sum test:

Step 1: Combine $X_1, X_2, \dots, X_n, Y_1, Y_2, \dots, Y_m$ and find all the ranks of these data.

Step 2: Find the sum of the ranks W corresponding to X_1, X_2, \dots, X_n .

Step 3: The following are the Wilcoxon rank sum tests under 3 alternatives:

- 1. $H_0: M_1 = M_2 \ vs. H_1: M_1 > M_2 \Rightarrow W > W_U$ then reject H_0 , where W_U can be found by table.
- 2. H_0 : $M_1 = M_2 \ vs. \ H_1$: $M_1 < M_2 \Rightarrow W < W_L$ then reject H_0 , where W_L can be found by table.
- 3. $H_0: M_1 = M_2 \ vs. \ H_1: M_1 \neq M_2 \Rightarrow W > W_U \ or \ W < W_L$, then reject H_0 .

Example:

South	60	100	150	290		
North	110	130	140	170	200	310

The above data are the incomes in both North and South areas. Test

$$H_0: M_1 = M_2 \ vs. H_1: M_1 \neq M_2$$

with $\alpha = 0.05$.

[solution]:

Step 1:

Income	60	100	150	290	110	130	140	170	200	310
Rank	1	2	6	9	3	4	5	7	8	10

Step 2:

$$n = 4, m = 6, W = 1 + 2 + 6 + 9 = 18, W_L = 12, W_U = 32$$

Step 3:

$$12 = W_L \le W = 18 \le 32 = W_{II}$$

we do not reject H_0

Example (Splus):

in1=c(60,100,150,290) in2=c(110,130,140,170,200,310) wilcox.test(in1,in2)

Useful links:

Core Ftp: http://coreftp.com/download.html

Recuva: http://www.piriform.com/recuva/download