4.4. Principal component analysis

1. Estimated principal components:

We first estimate the theoretical variance-covariance matrix Σ of the random vector

$$
Z=\left[\begin{array}{c}
Z_{1} \\
Z_{2} \\
\vdots \\
Z_{p}
\end{array}\right]
$$

by the sample variance-covariance S,

$$
S=\left[\begin{array}{cccc}
\widehat{V}\left(Z_{1}\right) & \widehat{C}\left(Z_{1}, Z_{2}\right) & \cdots & \widehat{C}\left(Z_{1}, Z_{p}\right) \\
\widehat{C}\left(Z_{2}, Z_{1}\right) & \widehat{V}\left(Z_{2}\right) & \cdots & \widehat{C}\left(Z_{2}, Z_{p}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\widehat{C}\left(Z_{p}, Z_{1}\right) & \widehat{C}\left(Z_{p}, Z_{2}\right) & \cdots & \widehat{V}\left(Z_{p}\right)
\end{array}\right],
$$

Where

$$
\widehat{V}\left(Z_{j}\right)=\frac{\sum_{i=1}^{n}\left(X_{i j}-\bar{X}_{j}\right)^{2}}{n-1}, \widehat{C}\left(Z_{j}, Z_{k}\right)=\frac{\sum_{i=1}^{n}\left(X_{i j}-\bar{X}_{j}\right)\left(X_{i k}-\bar{X}_{k}\right)}{n-1}, j, k=1, \cdots, p
$$

and where $\bar{X}_{j}=\frac{\sum_{i=1}^{n} X_{i j}}{n}$. Suppose $e_{1}, e_{2}, \cdots, e_{p}$ are orthonormal eigenvectors of S corresponding to the eigenvalues $\hat{\lambda}_{1} \geq \hat{\lambda}_{1} \geq \cdots \geq \hat{\lambda}_{p} \geq 0$. Then, the i'th estimated principal component is

$$
\widehat{Y}_{i}=e_{i}^{t} Z, \widehat{V}\left(\widehat{Y}_{i}\right)=\widehat{\lambda}_{i}, i=1, \cdots, p
$$

Example (Splus):

varir=var(ir) \#\#\# ir=as.matrix(iris[,2:5]) in R eigenvarir=eigen(varir)
eigenvarir\$́vectors
$\# \widehat{Y}_{1}=0.3613 Z_{1}-0.0845 Z_{2}+0.8566 Z_{3}+0.3582 Z_{4}$
eigenvarir\$vectors[,1]
$\# \widehat{Y}_{4}=-0.3154 Z_{1}+0.3197 Z_{2}+0.4783 Z_{3}-0.7536 Z_{4}$
eigenvarir\$vectors[,4]
eigenvarir\$values[1] \# $\widehat{V}\left(\widehat{Y}_{1}\right)=4.228$
irprin=princomp(ir)
irprin

irprin\$loadings	$\# e_{1}, e_{2}, e_{3}, e_{4}$
irprin\$sdev^2	$\# \hat{\lambda}_{1}, \hat{\lambda}_{2}, \hat{\lambda}_{3}, \hat{\lambda}_{4}$

2. Excluding principal components:

The purpose of the principal component analysis is to reduce the complexity of multivariate data by transforming the data into the principal component space, and then choosing the first p^{*} principal components that explain "most" of the variation in the original variables. 3 criteria can be used to decide how many principal components to retain:
(a) Plot the eigenvalues $\hat{\lambda}_{i}$ versus i, The resulting plot is called a screeplot.

Example (Splus):

plot(irprin)
plot(irprin,style="lines") \# the screeplot, not generated in R

It seems that the first one or the first two principal components are "mountainside" and the others are screes. Therefor, either \widehat{Y}_{1} or $\left(\widehat{Y}_{1}, \widehat{Y}_{2}\right)$ should be retained.
(b) Include just enough components to explain some amount (typically 90\%) of variance.

Example (Splus):

summary(irprin)
(c) Excluding those principal components with eigenvalues below the average.

Example (Splus):

$\operatorname{mean}(i r p r i n \$ s d e v$		
	$2)$	$\#$

Note:

The first criteria usually results in too many included components while the third criteria typically includes too few. The $\mathbf{9 0} \%$ criteria is often a useful compromise.

