Chapter 5: Categorical Data Analysis and Object-Oriented

Programming (OOP)

I. Statistics

5.1. Categorical data analysis

1. Logistic regression models:

$$Y_i \sim Binomial(n_i, p_i), 0 \leq Y_i \leq n_i, i = 1, \dots, m,$$

$$logit\left[\frac{E(Y_i)}{n_i}\right] = logit(p_i) = log\left(\frac{p_i}{1-p_i}\right) = \sum_{i=1}^p \beta_j X_{ij}.$$

Example:

The following table refers to 661 children with birth weights 650 g and 1749 g all of whom survived for at least one year. The variables of interest are:

Cardiac: mild heart problems of the mother during pregnancy

Comps: gynaecological problems during pregnancy

Smoking: mother smoked at least one cigarette per day during the first months of pregnancy.

BW: was the birth weight less than 1250

Cardiac		Yes				No			
Comps		Yes		No		Yes		No	
Smoking		Yes	No	Yes	No	Yes	No	Yes	No
BW	Yes	10	25	12	15	18	12	42	45
	No	7	5	22	19	10	12	202	205

Analyze the data and interpret the relationship of the children weights and mother's habits and health conditions.

Example (Splus):

BW.yes=c(10,25,12,15,18,12,42,45)

BW.no=c(7,5,22,19,10,12,202,205)

BW=cbind(BW.yes,BW.no)

cardiac=factor(rep(c("0","1"),each=4))

comps=factor(rep(rep(c("0","1"),each=2),2))

smoking=factor(rep(c("0","1"),4))

survived.glm=glm(BW~cardiac+comps+smoking,family=binomial(link=logit))

```
anova(survived.glm,test="Chisq")
summary(survived.glm)
survived.glm2=glm(BW~cardiac+comps,family=binomial(link=logit))
anova(survived.glm2,test="Chisq")
summary(survived.glm2)
```

2. Log-linear models:

$$Y_i \sim Poisson(\lambda_i), i = 1, \dots, n,$$

$$log[E(Y_i)] = log(\lambda_i) = \sum_{j=1}^p \beta_j X_{ij}.$$

Example:

The data given in Splus data frame *Insurance* (in the library MASS) consist of the numbers of policy-holders, *Holders*, the numbers of car insurance claims made by those policyholders, *Claims*. There are three explanatory variables, *District* (four levels), *Group* (of car, four levels), and *Age* (four ordered levels). Please analyze the data using log-linear models with offset *log(Holders)*.

Example (Splus):

```
library(MASS)
data=Insurance
age=factor(data$Age)
group=factor(data$Group)
dis=factor(data$District)
hol=log(data$Holders)
cla=data$Claims
dataf=data.frame(hol,dis,group,age,cla)
glm1=glm(cla~offset(hol)+dis+group+age,family=poisson,data=dataf)
anova(glm1,test="Chisq")
summary(glm1,cor=F)
```