10.5. Analysis of variance and F test:

 $F(v_1, v_2)$: F distribution with degrees of v_1 and v_2 .

Example 1

$$P(F(3,4) > x) = 0.05 \Rightarrow x = 6.59$$

 $P(F(9,11) > x) = 0.05 \Rightarrow x = 2.90$
 $P(F(3,4) > x) = 0.01 \Rightarrow x = 16.69$
 $P(F(3,4) > x) = 0.025 \Rightarrow x = 9.98$

F test:

As H_0 is true, the random variable with sample value f is $F(k-1,n_T-k)$. The hypothesis is:

 H_0 : $\mu_1 = \mu_2 = \cdots = \mu_k$ vs H_a : not all population means are equal. Then,

reject
$$H_0$$
: $f > f_{k-1,n_T-k,\alpha}$
not reject H_0 : $f \le f_{k-1,n_T-k,\alpha}$

where

$$f = \frac{MSB}{MSW} = \frac{\left(\sum_{j=1}^{k} n_j (\overline{x}_j - \overline{x})^2 / k - 1\right)}{\left(\sum_{j=1}^{k} (n_j - 1) s_j^2 / n_T - k\right)}$$

and $f_{k-1,n_T-k,lpha}$ can be obtained by

$$P(F(k-1,n_T-k)>f_{k-1,n_T-k,\alpha})=\alpha.$$

In addition,

$$p-value = P(F(k-1, n_T - k) > f).$$

ANOVA table:

Source	Sum of	Degree of	Mean Square	F
	Squares	Freedom		
Between	SSB	k – 1	MSB	$f = \frac{MSB}{MSW}$
Within	SSW	$n_T - k$	MSW	
Total	SST	n_T-1		

12.4: Motivating Example (continue):

Since k = 3, $n_T = 18$, $\alpha = 0.05$,

$$f = \frac{ns_{\overline{X}}^2}{\left(\frac{\sum_{j=1}^3 (n_j - 1)s_j^2}{n_T - 3}\right)} = \frac{258}{28.67} = 9 > 3.68 = f_{2,15,0.05} = f_{k-1,n_T-k,\alpha}$$

we reject H_0 , where

$$P(F(2,15) > f_{2,15,0,05}) = 0.05 \Rightarrow f_{2,15,0,05} = 3.68.$$

In addition,

$$p-value = P(F(k-1,n_T-k) > f) = P(F(2,15) > 9) = 0.0027 < 0.05$$
 we also reject H_0 .

Example2:

The following data are the number of products of 3 different production lines.

Number of Products						
Line 1	210	215	205	180	175	190
Line 2	180	160	195	190	170	155
Line 3	145	170	165	160	155	175

Let μ_1 , μ_2 and μ_3 be the mean number of products of the 3 production lines. Please test the hypothesis H_0 : $\mu_1=\mu_2=\mu_3$ at $\alpha=0.05$.

[Solution:]

$$k = 3$$
, $\alpha = 0.05$, $n_1 = n_2 = n_3 = 6$, $n_T = n_1 + n_2 + n_3 = 18$

and

$$\overline{x}_1 = 195.83, \overline{x}_2 = 175, \overline{x}_3 = 161.6, \overline{x} = 177.5$$

Then,

$$MSB = \frac{\sum_{j=1}^{k} n_j (\overline{x}_j - \overline{x})^2}{k-1}$$

$$= \frac{6 \cdot (195.83 - 177.5)^2 + 6 \cdot (175 - 177.5)^2 + 6 \cdot (161.6 - 177.5)^2}{3-1}$$

$$= 1779.4$$

and

$$MSW = \frac{\sum_{j=1}^{k} \sum_{i=1}^{n_j} (x_{j,i} - \overline{x}_j)^2}{n_T - k}$$

$$= \frac{(210 - 195.83)^2 + \dots + (180 - 175)^2 + \dots + (175 - 161.6)^2}{18 - 3}$$

$$= 216.91$$

Therefore,

$$f = \frac{MSB}{MSW} = \frac{1779.4}{216.91} = 8.2 > 3.68 = f_{2,15,0.05} = f_{k-1,n_T-k,\alpha}$$

we reject H_0 .

Example 3:

The following ANOVA table for $\,4\,$ normal populations with the same variance $\,\sigma^2\,$ and means $\,\mu_1,\mu_2,\mu_3\,$ and $\,\mu_4.$

Source	Sum of Squares	Degree of Freedom	Mean Square	F
Between	(1)	(3)	237.4	(6)
Within	(2)	(4)	(5)	
Total	1909.2	22		

- (a) Please complete the above ANOVA table.
- (b) Test H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$ at $\alpha = 0.05$. [Solution:]

(a)

$$k = 4, (3) = k - 1 = 3,$$

$$(4) = 22 - (3) = 22 - 3 = 19.$$

$$237.4 = \frac{(1)}{(3)} = \frac{(1)}{3} \Rightarrow (1) = 237.4 \cdot 3 = 712.2.$$

$$(2) = 1909.2 - (1) = 1909.2 - 712.2 = 1197.$$

$$(5) = \frac{(2)}{(4)} = \frac{1197}{19} = 67.$$

$$(6) = \frac{237.4}{(5)} = \frac{237.4}{67} = 3.767.$$

Therefore, ANOVA table is

Source	Sum of	Degree of	Mean Square	F
	Square	Freedom		
Between	712.2	3	237.4	3.767
Within	1197	19	63	
Total	1909.2	22		

(b)

$$k = 4, n_T = 23, \alpha = 0.05$$

 $f = 3.767 > 3.13 = f_{3,19,0.05} = f_{k-1,n_T-k,\alpha}$

we reject H_0 .