4.4. Conditional probability:

$A \mid B$: Event \boldsymbol{A} given the condition that event B has occurred.

Example 10 (continue):

$\{2\} \mid E_{1}$: Point $\mathbf{2}$ occurs given that the point is known to be even.
$P(A \mid B)$: The conditional probability of A given B (as the event B has occurred, the chance of the event A then occurs!!)

Formula of the conditional probability:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

given $P(B) \neq 0$, and

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

given $P(A) \neq 0$.

Example 10 (continue):

$$
P\left(\{2\} \mid E_{1}\right)=\frac{P\left(E_{1} \cap\{2\}\right)}{P\left(E_{1}\right)}=\frac{P(\{2\})}{P\left(E_{1}\right)}=\frac{1 / 6}{1 / 2}=\frac{1}{3}
$$

Note: $P\left(A^{c} \mid B\right)+P(A \mid B)=1$

Note: $P(A \cap B)=P(B) P(A \mid B)=P(A) P(B \mid A)$.

Independent events: Two events A and B are said to be independent if

$$
P(A \mid B)=P(A)
$$

or

$$
P(B \mid A)=P(B)
$$

Dependent events: Two events A and B are said to be dependent if

$$
P(A \mid B) \neq P(A)
$$

or

$$
P(B \mid A) \neq P(B)
$$

Note:

$$
P(A \cap B)=P(A) P(B)
$$

as events A and B are independent.

Intuitively, if events A and B are independent, then the chance of event A occurring is the same no matter whether event B has occurred. That is, event A occurring is "independent" of event B occurring. On the other hand, if events A and B are dependent, then the chance of event A occurring given that event B has occurred will be different from the one with event B not occurring.

Example 12:

	Male Police Officer	Female Police Officer
Getting Promotion	288	36
Not Getting Promotion	672	204

A : the event of a police officer getting promotion.
M : the event of a police officer being man.
W : the event of a police officer being woman.
Then,

$$
\begin{gathered}
P(A)=\frac{288+36}{1200}=0.27, P(A \mid M)=\frac{288}{288+672}=0.3 \\
P(A \mid W)=\frac{36}{204+36}=0.15
\end{gathered}
$$

The above result implies the chance of a promotion knowing the candidate being male is twice higher than the one knowing the one being female. In addition, the chance of a promotion knowing the candidate being female (0.15) is much lower than the overall promotion rate (0.27). That is, the promotion event A is "dependent" on the gender event M or W.
$\Rightarrow A$ promotion is not independent of the gender.

Example 13:

The following are the data on the gender and marital status of $\mathbf{2 0 0}$ customers of a company.

	Male	Female
Single	20	30
Married	$\mathbf{1 0 0}$	50

(a) What is the probability of finding a single female customer?
(b) What is the probability of finding a married male customer?
(c) If a customer is female, what is the probability that she is single?
(d) What percentage of customers is male?
(e) If a customer is male, what is the probability that he is married?
(f) Are single and male mutually exclusive? Explain.
(g) Is single independent of female? Explain.
[Solution:]

$$
A_{1}: \text { the customers are single. } A_{2} \text { : the customers are married. }
$$

\boldsymbol{B}_{1} : the customers are male. \boldsymbol{B}_{2} : the customers are female.
(a)

$$
P\left(A_{1} \cap B_{2}\right)=\frac{30}{200}=0.15
$$

(b) $P\left(A_{2} \cap B_{1}\right)=100 / 200=0.5$.
(c) Since

$$
\begin{gathered}
P\left(B_{2}\right)=P\left(A_{1} \cap B_{2}\right)+P\left(A_{2} \cap B_{2}\right)=\frac{30}{200}+\frac{50}{200}=\frac{80}{200} \\
P\left(A_{1} \mid B_{2}\right)=\frac{P\left(A_{1} \cap B_{2}\right)}{P\left(B_{2}\right)}=\frac{30 / 200}{80 / 200}=0.375
\end{gathered}
$$

(d)

$$
P\left(B_{1}\right)=P\left(A_{1} \cap B_{1}\right)+P\left(A_{2} \cap B_{1}\right)=\frac{20}{200}+\frac{100}{200}=0.6
$$

(e)

$$
P\left(A_{2} \mid B_{1}\right)=\frac{P\left(A_{2} \cap B_{1}\right)}{P\left(B_{1}\right)}=\frac{100 / 200}{120 / 200}=\frac{5}{6} .
$$

(f) Single and male are not mutually exclusive since $P\left(A_{1} \cap B_{1}\right) \neq 0$.
(g) Single and female are not independent since

$$
P\left(A_{1} \mid B_{2}\right)=\frac{30}{80} \neq \frac{50}{200}=P\left(A_{1}\right) .
$$

Supplement Example:

You are given the following information on Events A, B, and C

$$
\begin{gathered}
P(A)=0.1, P(B)=0.3, P(C)=0.4, P(A \cap C)=0.04 \\
P(B \mid A)=0.9, P(C \mid B)=0.6 .
\end{gathered}
$$

(a) Compute $P\left(A^{c} \cap C\right)$.
(b) Compute $\boldsymbol{P}\left(\boldsymbol{C}^{c} \cup B\right)$.
(c) Are A and B mutually exclusive? Explain.
(d) Are A and C independent? Explain.

[Solution:]

(a) $P\left(A^{c} \cap C\right)=P(C)-P(A \cap C)=0.4-0.04=0.36$.
(b) $P\left(C^{c} \cup B\right)=1-P\left(B^{c} \cap C\right)=1-[P(C)-P(B \cap C)]=1-(0.4-0.18)$

$$
=0.78
$$

since $P(B \cap C)=P(B) P(C \mid B)=0.3 \cdot 0.6=0.18$.
(c) Since $P(A \cap B)=P(A) P(B \mid A)=0.1 \cdot 0.9=0.09 \neq 0, A$ and B are not mutually exclusive.
(d) Since $P(A \cap C)=0.04=0.1 \cdot 0.4=P(A) P(C), A$ and C are independent.

