9.4. Two-tailed tests about a population mean: Large sample

case ($n \ge 30$):

Objective: Find a sensible statistical procedure to test

$$H_0: \mu = \mu_0 \ vs \ H_a: \mu \neq \mu_0$$
.

Derivation of a sensible test:

Intuitively, if H_0 : $\mu=\mu_0$ is true, $\overline{X}\approx N\bigg(\mu_0$, $\bigg(\sigma/\sqrt{n}\bigg)^2\bigg)$. Then, it is very likely that the sample mean \overline{x} should have value close to μ_0 . On the other hand, if \overline{x} is

much larger or smaller than $\mu_{0,}$ it seems to indicate that H_{a} : $\mu \neq \mu_{0}$ is a sensible hypothesis. Thus, a sensible statistical procedure would be

reject
$$H_0: |\overline{x} - \mu_0| > c$$

not reject $H_0: |\overline{x} - \mu_0| \leq c$,

where c is some constant.

Next Question: How to determine the value of c?

Answer: Control α (the probability of making type I error) to determine the value of c.

Since

$$\mu=\mu_0$$
 , $\overline{X}pprox N\left(\mu_0$, $\left(\sigma/\sqrt{n}
ight)^2
ight)$

Then,

lpha= the probability of wrong rejection of H_0 = $P(H_0$ is true but is rejected) = $P(\mu=\mu_0$, $|\overline{X}-\mu_0|>c)$

$$= P\left(\left|\frac{\overline{X} - \mu_0}{\left(\sigma/\sqrt{n}\right)}\right| > \frac{c}{\left(\sigma/\sqrt{n}\right)}\right) \approx P\left(|Z| > \frac{c}{\left(\sigma/\sqrt{n}\right)}\right)$$

$$\Rightarrow \frac{c}{\left(\sigma/\sqrt{n}\right)} = z\alpha/2 \Rightarrow c = z\alpha/2 \left(\sigma/\sqrt{n}\right).$$

Thus,

reject
$$H_0: |\overline{x} - \mu_0| > z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$$

not reject
$$H_0: |\overline{x} - \mu_0| \le z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$$

is a sensible statistical procedure. Furthermore, denote. Thus, by dividing σ/\sqrt{n} on the both sides, the above sensible statistical procedure can be simplified to

$$reject |H_0:|z| = \left|\frac{\overline{x} - \mu_0}{\sigma_{\overline{x}}}\right| = \left|\frac{\overline{x} - \mu_0}{\left(\sigma/\sqrt{n}\right)}\right| > z\alpha/2$$

not reject $H_0: |z| \leq z\alpha_{/2}$

In addition,

p – value

= the probability of making type I error by rejecting H_0 at \overline{x} as $\mu = \mu_0$

$$= P(\mu = \mu_0, |\overline{X} - \mu_0| > |\overline{X} - \mu_0|) = P\left(\mu = \mu_0, \left| \frac{\overline{X} - \mu_0}{\left(\sigma/\sqrt{n}\right)} \right| > \left| \frac{\overline{X} - \mu_0}{\left(\sigma/\sqrt{n}\right)} \right|\right)$$

$$\approx P(|Z| > |z|)$$

General Case: $n \ge 30$ and level of significance α

• As σ is known,

$$z = rac{\overline{x} - \mu_0}{\sigma_{\overline{X}}} = rac{\overline{x} - \mu_0}{\left(\sigma/\sqrt{n}\right)}.$$

• As σ is unknown,

$$z = \frac{\overline{x} - \mu_0}{s_{\overline{x}}} = \frac{\overline{x} - \mu_0}{\left(s / \sqrt{n}\right)}.$$

3. H_0 : $\mu = \mu_0 \ vs \ H_a$: $\mu \neq \mu_0$:

reject
$$H_0: |z| > z\alpha_{/2}$$

not reject $H_0: |z| \le z\alpha_{/2}$

In addition,

$$p-value = P(|Z| > |z|)$$

- If $p value < \alpha$, then reject H_0 .
- If $p-value \ge \alpha$, then do not reject H_0 .

Example 4:

Objective: check if the produced golf balls have an average distance in carry and roll of 280 yards as $n=36, \overline{x}=278.5, \sigma=12, \alpha=0.05$.

[Solution:]

$$H_0$$
: $\mu = \mu_0 = 280 \ vs \ H_a$: $\mu \neq \mu_0 = 280$.

Then,

$$z = \frac{\overline{x} - \mu_0}{\left(\frac{\sigma}{\sqrt{n}}\right)} = \frac{278.5 - 280}{\left(\frac{12}{\sqrt{36}}\right)} = -0.75.$$

Since

$$|\mathbf{z}| = |-0.75| = 0.75 < 1.96 = \mathbf{z}_{0.025} = \mathbf{z}_{\alpha/2}$$

we thus do not reject H_{0}. In addition,

 $p-value = P(|Z|>|z|) = P(|Z|>0.75) = 0.4532 > 0.05 = \alpha,$ we do not reject $\ H_0.$

Interval estimation and hypothesis testing

For H_0 : $\mu=\mu_0$ vs H_a : $\mu\neq\mu_0$ with σ known, we do not reject H_0 as

$$|z| = \left| \frac{\overline{x} - \mu_0}{\left(\sigma / \sqrt{n} \right)} \right| = \left| \frac{\mu_0 - \overline{x}}{\left(\sigma / \sqrt{n} \right)} \right| \le z \alpha_{/2}$$

$$\Leftrightarrow -z \alpha_{/2} \le \frac{\mu_0 - \overline{x}}{\left(\sigma / \sqrt{n} \right)} \le z \alpha_{/2}$$

$$\Leftrightarrow -z \alpha_{/2} \frac{\sigma}{\sqrt{n}} \le \mu_0 - \overline{x} \le z \alpha_{/2} \frac{\sigma}{\sqrt{n}}$$

$$\Leftrightarrow \overline{x} - z \alpha_{/2} \frac{\sigma}{\sqrt{n}} \le \mu_0 \le \overline{x} + z \alpha_{/2} \frac{\sigma}{\sqrt{n}}$$

$$\Leftrightarrow \mu_0 \in \left[\overline{x} - z \alpha_{/2} \frac{\sigma}{\sqrt{n}}, \overline{x} + z \alpha_{/2} \frac{\sigma}{\sqrt{n}} \right]$$

$$\Leftrightarrow \mu_0 \text{ falls in } (1 - \alpha) \cdot 100\% \text{ C.I. of } \mu$$

On the other hand, we reject H_0 as

$$\iff \mu_0 \notin \left[\overline{x} - z \alpha_{/2} \frac{\sigma}{\sqrt{n}}, \overline{x} + z \alpha_{/2} \frac{\sigma}{\sqrt{n}} \right]$$

$$\iff \mu_0 \ do \ not \ falls \ in \ (1 - \alpha) \cdot 100\% \ C.I.of \ \mu$$

A confidence Interval approach to H_0 : $\mu = \mu_0 \ vs \ H_a$: $\mu \neq \mu_0$: $n \geq 30$ and level of significance α

Step 1: Construct a $(1 - \alpha) \cdot 100\%$ confidence interval

• As σ is known,

$$\overline{x} \pm z \alpha_{/2} \sigma_{\overline{X}} = \overline{x} \pm z \alpha_{/2} \frac{\sigma}{\sqrt{n}} = \left[\overline{x} - z \alpha_{/2} \frac{\sigma}{\sqrt{n}}, \overline{x} + z \alpha_{/2} \frac{\sigma}{\sqrt{n}} \right]$$

• As σ is unknown,

$$\overline{x} \pm z \alpha_{/2} s_{\overline{X}} = \overline{x} \pm z \alpha_{/2} \frac{s}{\sqrt{n}} = \left[\overline{x} - z \alpha_{/2} \frac{s}{\sqrt{n}}, \overline{x} + z \alpha_{/2} \frac{s}{\sqrt{n}} \right]$$

Step 2: If μ_0 falls into the above confidence intervals, then do not reject H_0 .

Otherwise, reject H_0 .

Example 4 (continue):

In the previous example,

$$n = 36, \overline{x} = 278.5, \sigma = 12, \alpha = 0.05,$$

 $H_0: \mu = \mu_0 = 280 \ vs \ H_a: \mu \neq \mu_0 = 280.$

We can also use confidence interval approach to hypothesis testing. A 95% confidence interval for μ is

$$\overline{x} \pm z_{0.05/2} \frac{\sigma}{\sqrt{n}} = 278.5 \pm 1.96 \cdot \frac{12}{\sqrt{36}} = 278.5 \pm 3.92 = [274.58, 282.42].$$

Since

$$\mu_0 = 280 \in [274.58, 282.42],$$

we do not reject H_0 .

Example 5:

The average starting salary of a college graduate is \$19000 according to government's report. The average salary of a random sample of 100 graduates is \$18800. The standard error is 800.

- (a) Is the government's report reliable as the level of significance is 0.05.
- (b) Find the p-value and test the hypothesis in (a) with the level of significance $\alpha = 0.01$.
- (c) The other report by some institute indicates that the average salary is \$18900. Construct a 95% confidence interval and test if this report is reliable.

[Solution:]

(a)

$$n = 100, \overline{x} = 18800, s = 800, \alpha = 0.05,$$

 $H_0: \mu = \mu_0 = 19000 \ vs \ H_a: \mu \neq \mu_0 = 19000.$

Then.

$$|z| = \left| \frac{\overline{x} - \mu_0}{\left(\frac{s}{\sqrt{n}} \right)} \right| = \left| \frac{18800 - 19000}{\left(\frac{800}{\sqrt{100}} \right)} \right| = |-2.5| = 2.5 > 1.96 = z_{0.025} = z_{\alpha/2}.$$

Therefore, reject H_0 .

(b)

p-value = P(|Z|>|z|) = P(|Z|>|2.5|) = 2P(Z>2.5) = 0.0124>0.01, we do not reject H_0 .

(c)

$$H_0$$
: $\mu = \mu_0 = 18900 \ vs \ H_a$: $\mu \neq \mu_0 = 18900$.

A 95% confidence interval is

$$\overline{x} \pm z_{0.05/2} \frac{s}{\sqrt{n}} = 18800 \pm 1.96 \cdot \frac{800}{\sqrt{100}} = [18643.2, 18956.8].$$

Since

$$\mu_0 = 18900 \in [18643.2, 18956.8],$$

we do not reject H_0 .

Example 6:

A sample of 49 provides a sample mean of 38 and a sample standard deviation of 7. Let $\alpha=0.05$. Please test the hypothesis

$$H_0$$
: $\mu = \mu_0 = 40 \ vs \ H_a$: $\mu \neq \mu_0 = 40$.

based on

- (a) classical hypothesis test.
- (b) p-value.
- (c) confidence interval.

[Solution:]

$$n = 49, \overline{x} = 38, s = 7, \alpha = 0.05, \mu_0 = 40,$$

$$z = \frac{\overline{x} - \mu_0}{\left(\frac{s}{\sqrt{n}}\right)} = \frac{38 - 40}{\left(\frac{7}{\sqrt{49}}\right)} = -2.$$

(a)

$$|z| = 2 > 1.96 = z_{0.025} = z_{\alpha/2}$$

we reject H_0 .

(b)

$$p-value = P(|Z|>|z|) = P(|Z|>2) = 0.\,0456 < 0.\,05 = \alpha,$$
 we reject $\,H_0.\,$

(c)

A $\, (1-\alpha) \cdot 100\% = 95\% \,$ confidence interval is

$$\overline{x} \pm z \alpha_{/2} \frac{s}{\sqrt{n}} = 38 \pm z_{0.025} \frac{7}{\sqrt{49}} = 38 \pm 1.96 = [36.04, 39.96].$$

Since

$$\mu_0 = 40 \notin [36.04, 39.96],$$

we reject H_0 .