9.6. Tests about a population proportion:

The general setting is the following:

p: the population proportion;

 p_0 : the particular hypothesized value.

The statistical description for a testing problem is

$$H_0$$
: $p = p_0 vs H_a$: $p \neq p_0$

or

$$H_0: p \ge p_0 \ vs \ H_a: p < p_0$$

or

$$H_0: p \leq p_0 \ vs \ H_a: p > p_0.$$

Motivating Example:

Objective: Determine whether a special promotion has increased the proportion.

The statistical description for this testing problem is

$$H_0: p \le p_0 = 0.2 \ vs \ H_a: p > p_0 = 0.2$$

with

$$n = 400, \overline{p} = \frac{100}{400} = 0.25, \alpha = 0.05.$$

General Case: Large sample $(np \geq 5, n(1-p) \geq 5)$ and level of significance α

$$z = rac{\overline{p} - p_0}{\sigma_{\overline{p}}} = rac{\overline{p} - p_0}{\left(\sqrt{rac{p_0(1 - p_0)}{n}}
ight)}.$$

1. $H_0: p \ge p_0 \ vs \ H_a: p < p_0$:

reject
$$H_0$$
: $z < -z_{\alpha}$

not reject
$$H_0$$
: $z \ge -z_\alpha$

In addition,

$$p - value = P(Z < z).$$

2. $H_0: p \le p_0 \ vs \ H_a: p > p_0$:

reject
$$H_0$$
: $z > z_{\alpha}$

not reject
$$H_0$$
: $z \leq z_{\alpha}$

In addition,

$$p-value = P(Z > z)$$
.

3.
$$H_0$$
: $p = p_0 \ vs \ H_a$: $p \neq p_0$:

reject
$$H_0: |z| > z\alpha_{/2}$$

not reject $H_0: |z| \le z\alpha_{/2}$

In addition,

$$p-value = P(|Z| > |z|).$$

Confidence interval approach for two-sided test:

$$p_0 \notin \left[\overline{p} - z \alpha_{/2} \sqrt{\frac{\overline{p}(1-\overline{p})}{n}}, \overline{p} + z \alpha_{/2} \sqrt{\frac{\overline{p}(1-\overline{p})}{n}}\right] \Rightarrow reject \ H_0.$$

Note:

$$\sigma_{\bar{P}} = \sqrt{\frac{p_0(1-p_0)}{n}}$$

Is the standard deviation of \overline{P} , i.e., $\sigma_{\overline{P}}=\sqrt{Var(\overline{P})}$, as $p=p_0$ (H_0 is true).

Note:

For two-sided test, the confidence interval method might **not** be equivalent to the other two methods!!

Motivating Example:

$$z = \frac{\overline{p} - p_0}{\left(\sqrt{\frac{p_0(1 - p_0)}{n}}\right)} = \frac{0.25 - 0.2}{\left(\sqrt{\frac{0.2(1 - 0.2)}{400}}\right)} = 2.5 > 1.645 = z_{0.05} = z_{\alpha}.$$

Therefore, we reject H_0 .

The other approach is to use p-value.

$$p-value = P(Z>z) = P(Z>2.5) = 0.0062 < 0.05 = \alpha, \label{eq:problem}$$
 we reject $\,H_0.\,$

Example 10:

Consider the following hypothesis test: H_0 : $p \le 0.8 \ vs \ H_a$: p > 0.8.

A sample of 400 provided a sample proportion of 0.853.

- (a) Using $\alpha = 0.05$, what is the conclusion based on classical hypothesis test?
- (b) Using $\, lpha = 0.001$, what is the conclusion based on p-value? [Solution:]

$$p_0 = 0.8, \overline{p} = 0.853, z = \frac{\overline{p} - p_0}{\left(\sqrt{\frac{p_0(1 - p_0)}{n}}\right)} = \frac{0.853 - 0.8}{\left(\sqrt{\frac{0.8(1 - 0.8)}{400}}\right)} = 2.65.$$

(a) Since

$$z = 2.65 > 1.645 = z_{0.05} = z_{\alpha}$$

we reject H_0 .

(b)

$$p-value = P(Z>z) = P(Z>2.65) = 0.004 > 0.001 = \alpha,$$
 we do not reject $\,H_0.\,$

Example 11:

An official of a large national union claims that the fraction of women in the union is not significant different from 0.5, H_0 : p=0.5 vs H_a : $p\neq 0.5$. Using the sample information reported below,

Sample size	400
Women	168
Men	232

- (a) Test the hypothesis at 5% level of significance using a critical value (classical approach).
- (b) Test the hypothesis at 10% level of significance using a p-value.
- (c) Using a confidence interval, test the hypothesis at the 5% level of significance. [Solution:]

$$p_0 = 0.5, n = 400, \overline{p} = \frac{168}{400} = 0.42,$$

$$z = \frac{\overline{p} - p_0}{\left(\sqrt{\frac{p_0(1 - p_0)}{n}}\right)} = \frac{0.42 - 0.5}{\left(\sqrt{\frac{0.5(1 - 0.5)}{400}}\right)} = -3.2.$$

(a)
$$|z|=|-3.2|=3.2>1.96=z_{0.025}=z_{\alpha_{/2}}\Rightarrow reject\ H_0.$$

(b)
$$p-value = P(|Z|>|z|) = P(|Z|>3.2) \approx 0 < 0.1 = \alpha \Rightarrow reject \ H_0.$$

(c) A 95% (lpha=0.05) confidence interval of p is

$$\overline{p} \pm z \alpha_{/2} \sqrt{\frac{\overline{p}(1-\overline{p})}{n}} = 0.42 \pm 1.96 \sqrt{\frac{0.42(1-0.42)}{400}} = [0.371, 0.468].$$

Since

$$p_0 = 0.5 \notin [0.371, 0.468],$$

we reject H_0 .

Example 12:

Consider the following hypothesis test, $H_0: p \ge 0.75 \ vs \ H_a: p < 0.75...$

A sample of $\,300\,$ is selected. Use $\,\alpha=0.05\,$, test the hypothesis based on p-value as:

(a)
$$\bar{p} = 0.68$$
.

(b)
$$\bar{p} = 0.77$$
.

[Solution:]

(a)

$$z = \frac{\overline{p} - p_0}{\left(\sqrt{\frac{p_0(1 - p_0)}{n}}\right)} = \frac{0.68 - 0.75}{\left(\sqrt{\frac{0.75(1 - 0.75)}{300}}\right)} = -2.8.$$

Then

$$p-value = P(Z < z) = P(Z < -2.8) = 0.\,0026 < 0.\,05 = \alpha,$$
 we reject $\,H_0.\,$

(b)

$$\overline{p} = 0.77, z = \frac{\overline{p} - p_0}{\left(\sqrt{\frac{p_0(1 - p_0)}{n}}\right)} = \frac{0.77 - 0.75}{\left(\sqrt{\frac{0.75(1 - 0.75)}{300}}\right)} = 0.8.$$

Then

$$p-value = P(Z < z) = P(Z < 0.8) = 0.7881 > 0.05 = \alpha,$$
 we do not reject $\,H_0.$

Chapters 8 and 9: Summary

 $(1-\alpha) \cdot 100\%$ confidence intervals:

(point estimate) \pm

 $\left[\left(z_{\alpha_{/2}},t_{n-1,\alpha_{/2}}\right)\cdot(standard\ deviation\ (error)\ of\ point\ estimate)\right]$

Hypothesis testing:

test statistic

 $= \frac{point\ estimate - (\mu_0, p_0)}{standard\ deviation\ (error)\ of\ point\ estimate\ under\ H_0}$

Summary table:

	Sample Mean μ		Sample
			Proportion p
	$n \ge 30$	n < 30,	
		normal population	
Test Statistic	$z = \frac{\overline{x} - \mu_0}{\sigma_{\overline{X}}}$	$t = \frac{\overline{x} - \mu_0}{s_{\overline{X}}}$	$z = \frac{\overline{p} - p_0}{\sigma_{\overline{p}}}$
	or		
	$z=\frac{\overline{x}-\mu_0}{s_{\overline{X}}}$		
Classical approach (critical values)	$-z_{\alpha}, z_{\alpha}, z_{\alpha/2}$	$-t_{n-1,lpha},t_{n-1,lpha},t_{n-1,lpha/2}$	$-z_{\alpha}, z_{\alpha}, z_{\alpha/2}$
Distribution (p – value)	Z	T(n-1)	Z
C. I.	$\overline{x} \pm z \alpha_{/2} \sigma_{\overline{X}}$ or $\overline{x} \pm z \alpha_{/2} s_{\overline{X}}$	$\overline{x} \pm t_{n-1,\alpha/2} s_{\overline{X}}$	$\overline{p}\pm z_{lpha/_{2}}s_{\overline{p}}$