1. (40\%) Let X be a discrete random variable with the following probability distribution:

$$
f_{X}(i)=\frac{100 i^{2}}{3 c^{3}}, i=1,2,3,4
$$

and $f_{X}(i)=0$, otherwise, where c is some constant.
(a) Compute c.
(b) Compute $P(1 \leq X<3)$ and $P(-2 \leq X<2)$.
(c) Let A denote the event that the values of X is greater than 1.2, i.e., $X>$
1.2, and let B denote the event that the values of X is smaller than 3.4, i.e., $X<3.4$. Find the conditional probability $\mathrm{P}(B \mid A)$, i.e., $P(X<3.4 \mid X>1.2)$.
(d) Compute $E(X)$.
(e) Compute $\operatorname{Var}(X)$.
2. (40\%) Given that Z is a standard normal random variable and X is a normal random variable with mean 1 and standard deviation 3.
(a) $P(-2.5 \leq Z<1.5)$
(b) $P(Z>2)$.
(c) $P(Z>c)=0.9495$, find c.
(d) $P(X<4)$.
(e) $P(-5 \leq X \leq 2 c+1)=0.9544$, find c.
3. (20\%) On the average, the time between arrivals of vehicles at a particular intersection is 0.5 minute. Please use Poisson distribution and exponential density to answer the following questions.
(a) What is the probability of 45 or more seconds between vehicle arrivals?
(b) What is the probability that the arrival time between vehicles is between 2 minutes and 3 minutes?
(c) What is the probability that there are 0 arrivals within 2 minutes?
(d) What is the probability that there are 3 arrivals within 3 minutes?
4. (20\%)
(a) A population has a mean 100 and a standard deviation of 30 . Suppose a sample of size $n=3600$ is taken. What is the probability that a sample mean will be within ± 1 of the population mean, i.e. $P(|\bar{X}-\mu| \leq 1)$?
(b) Suppose we have a population of 36 elements

11	12	13	14	15	16	17	18	19
21	23	5	7	29	2	24	6	38
3	6	27	28	29	0	2	31	8
42	34	6	8	9	1	3	5	47

Suppose the first row of the table of random number is
58683931088071415141632711315471744599867994551102
Please use simple random sampling methods to obtain a sample of 3 elements.
5. (20\%)
(a) The cholesterol level for an adult male of a specific racial group is normally distributed with a mean of $5.2 \mathrm{mmol} / \mathrm{L}$ and a standard deviation of 0.65 $\mathrm{mmol} / \mathrm{L}$. Which cholesterol level is less by 2.5% of the population?
(b) In your pocket you have 3 dimes (coins of 10 cents) and 2 quarters (coins of 25 cents). You grab at random 2 coins from your pocket. Let X be the random variable representing the amount of money you will grab. Find the probability distribution function of \boldsymbol{X}.

Equations:

$$
\begin{gathered}
\text { Poisson: } f_{X}(x)=\frac{e^{-\mu} \mu^{x}}{x!}, x=0,1,2, \cdots \\
X \sim N\left(\mu, \sigma^{2}\right) \Rightarrow \frac{X-\mu}{\sigma}=Z \sim N(0,1) \\
\bar{X} \approx N\left(\mu, \sigma_{\bar{X}}^{2}\right) \Rightarrow \frac{\bar{X}-\mu}{\sigma_{\bar{X}}}=\frac{\bar{X}-\mu}{(\sigma / \sqrt{n})} \approx Z \sim N(0,1)
\end{gathered}
$$

