Midterm

2020, 11, 10,

- 1. (50%)
- (a) (40%) Consider a sample with data values of

7	5	5	9	4
---	---	---	---	---

Compute the following.

- (i) The variance and the coefficient of variation.
- (ii) The 30th percentile and 65th percentile.
- (iii) The box plot.
- (iv) Can the empirical rule be applied to this data? Explain.
- (b) (10%) Suppose the data have a bell-shaped distribution with a mean of 7 and a standard deviation of 2.
 - (i) At least what percentage of data will have a value falling [1, 13]?
 - (ii) Determine the range within which contains approximately 68% of data.
- 2. (20%) Suppose we have the following data:

30	78	59	65	40	64	52	53	57
39	61	47	50	60	48	50	58	67

Suppose the number of non-overlapping classes is determined to be 4.

- (a) Construct a frequency distribution and cumulative percent frequency distribution.
- (b) Based on the result of (a), compute the grouped mean.
- 3. (30%)
- (a) (10%) The following data are for 20 observations on two qualitative variables: Majors (A: Accounting; B: Statistics; C: Management) and whether taking some test (Y: taking the test; N: not taking the test).

Observation	1	2	3	4	5	6	7	8	9	10
Majors	С	В	С	A	В	A	В	С	С	С
Taking Test	Y	Y	Y	N	Y	N	Y	N	Y	Y
Observation	11	12	13	14	15	16	17	18	19	20
Majors	С	В	С	A	В	С	С	A	В	В
Taking Test	N	Y	Y	Y	Y	N	Y	N	Y	Y

Develop a cross-tabulation for the data.

(b) (20%) For the following two samples of data, (x_i, y_i) , $i = 1, \dots 5$,

Sample 1: x_i	1	0	-1	-2	-3
Sample 2: y_i	1	1	2	2	4

- (i) Give the scatter diagram. (5%)
- (ii) Compute and interpret the sample correlation coefficient. (15%)
- 4. (25%) You are given the following information on Events A, B, and C.

$$P(A) = 0.4, P(A \cap B) = 0.16, P(B) = 0.4,$$

 $P(A|C) = 0.2, P(C) = 0.65.$

- (a) Compute $P(A \cup B^c)$.
- (b) Compute $P(A \cap C)$.
- (c) Compute $P(B^c|A)$.
- (d) Are A and B independent? Explain your answer.
- (e) Are B and C mutually exclusive? Explain your answer.
- 5. (10%) You travel from country A to country B, then country B to country C. The probabilities that your luggage is lost at different countries are 20% at country A and 25% at country B. Given that your luggage is lost as reaching country C, which country or countries it was most likely lost at? (Hint: Using conditional probabilities).

Equations:

$$s_{XZ} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(z_i - \overline{z})}{n-1}, r_{XZ} = \frac{s_{XZ}}{s_X s_Z},$$

$$\overline{x}_g = \frac{\sum_{k=1}^m f_k M_k}{n}, s_g^2 = \frac{\sum_{k=1}^m f_k (M_k - \overline{x}_g)^2}{n-1}.$$