1. (50%)
(a) (40\%) Consider a sample with data values of

7	5	5	9	4

Compute the following.
(i) The variance and the coefficient of variation.
(ii) The $30^{\text {th }}$ percentile and $65^{\text {th }}$ percentile.
(iii) The box plot.
(iv) Can the empirical rule be applied to this data? Explain.
(b) (10\%) Suppose the data have a bell-shaped distribution with a mean of 7 and a standard deviation of 2.
(i) At least what percentage of data will have a value falling [1,13]?
(ii) Determine the range within which contains approximately 68% of data.
2. (20\%) Suppose we have the following data:

30	78	59	65	40	64	52	53	57
39	61	47	50	60	48	50	58	67

Suppose the number of non-overlapping classes is determined to be 4.
(a) Construct a frequency distribution and cumulative percent frequency distribution.
(b) Based on the result of (a), compute the grouped mean.
3. (30\%)
(a) (10\%) The following data are for 20 observations on two qualitative variables: Majors (A: Accounting; B: Statistics; C: Management) and whether taking some test (Y: taking the test; N : not taking the test).

Observation	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
Majors	C	B	C	A	B	A	B	C	C	C
Taking Test	Y	Y	Y	N	Y	N	Y	N	Y	Y
Observation	11	12	13	14	15	16	17	18	19	$\mathbf{2 0}$
Majors	C	B	C	A	B	C	C	A	B	B
Taking Test	N	Y	Y	Y	Y	N	Y	N	Y	Y

Develop a cross-tabulation for the data.
(b) (20\%) For the following two samples of data, $\left(x_{i}, y_{i}\right), i=1, \cdots 5$,

Sample 1: x_{i}	1	0	-1	-2	-3
Sample 2: y_{i}	1	1	2	2	4

(i) Give the scatter diagram. (5\%)
(ii) Compute and interpret the sample correlation coefficient. (15\%)
4. (25\%) You are given the following information on Events A, B, and C.

$$
\begin{gathered}
P(A)=0.4, P(A \cap B)=0.16, P(B)=0.4 \\
P(A \mid C)=0.2, P(C)=0.65
\end{gathered}
$$

(a) Compute $P\left(A \cup B^{c}\right)$.
(b) Compute $P(A \cap C)$.
(c) Compute $P\left(B^{c} \mid A\right)$.
(d) Are A and B independent? Explain your answer.
(e) Are B and C mutually exclusive? Explain your answer.
5. (10\%) You travel from country A to country B, then country B to country C. The probabilities that your luggage is lost at different countries are 20% at country A and 25\% at country B. Given that your luggage is lost as reaching country C, which country or countries it was most likely lost at? (Hint: Using conditional probabilities).

Equations:

$$
\begin{gathered}
s_{X Z}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(z_{i}-\bar{z}\right)}{n-1}, r_{X Z}=\frac{s_{X Z}}{s_{X} s_{Z}} \\
\bar{x}_{g}=\frac{\sum_{k=1}^{m} f_{k} M_{k}}{n}, s_{g}^{2}=\frac{\sum_{k=1}^{m} f_{k}\left(M_{k}-\bar{x}_{g}\right)^{2}}{n-1}
\end{gathered}
$$

