Review 1

Chapter 1:

- 1. Elements, Variable, and Observations:
- 2. Type of Data: Qualitative Data and Quantitative Data
 - Qualitative data may be nonnumeric or numeric.
 - Quantitative data are always numeric.
 - Arithmetic operations are only meaningful with quantitative data.

Chapter 2:

- 1. Summarizing qualitative data:
 - Frequency distribution, relative frequency distribution, and percent frequency distribution.
 - Bar plot and pie plot.
- 2. Summarizing quantitative data:
 - Frequency distribution, relative frequency distribution, percent frequency distribution, cumulative frequency distribution, cumulative relative frequency distribution, cumulative percent frequency distribution
 - Histogram, ogive, and stem-and leaf display.

Chapters 3:

- Measures of Location
- Measures of Dispersion
- Exploratory Data Analysis
- Measure of Relative Location
- Weighted and Grouped Mean and Variance

Equations:

$$s^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1} = \frac{\sum_{i=1}^n x_i^2 - n\overline{x}^2}{n-1}$$
, $CV = \frac{s}{\overline{x}} \cdot 100$

$$\overline{x}_g = \frac{\sum_{k=1}^m f_k M_k}{\sum_{k=1}^m f_k} = \frac{\sum_{k=1}^m f_k M_k}{n}, s_g^2 = \frac{\sum_{k=1}^m f_k \big(M_k - \overline{x}_g \big)^2}{n-1} = \frac{\sum_{k=1}^m f_k M_k^2 - n \overline{x}_g^2}{n-1}$$

Example 1:

A magazine surveyed a sample of its subscribers. Some of the responses from the survey are shown below.

Subscriber ID	Gender	Age	Income (\$1000)
0006	F	22	45
4798	M	21	53
2291	F	33	82
4988	M	38	30

- (a) How many elements are in the data set? Write them down.
- (b) How many variables are in the data set? Write them down.
- (c) How many observations are in the data set? Write them down.
- (d) Which of the above (Sex, Age, Annual Household Income) are qualitative and which are quantitative?
- (e) Are the data time series or cross-sectional?

[Solution:]

- (a) 4 elements, subscribers: 0006, 4798, 2291, and 4988.
- (b) 3 variables, Gender, Age, and Income.
- (c) 4 observations, (F, 22, 45), (M, 21, 53), (F, 33, 82) and (M, 38, 30).
- (d) Quantitative: Age and Income; Qualitative: Gender.
- (e) The data are cross-sectional.

Example 2:

For the following data, 2, 1, 0, 2, 0, 2, 1, 2, 0, 2, 1, 2.

- (a) Compute the mean.
- (a) The standard deviation.
- (c) The coefficient of variation.
- (d) The (100/3)th percentile.
- (e) The 82th percentile
- (f) The mode.
- (g) The interquartile range.
- (h) The five number summary for the data.
- (i) The box plot.

[Solution:]

(a)

$$\overline{x} = \frac{\sum_{i=1}^{12} x_i}{12} = \frac{2+1+\cdots+1+2}{12} = 1.25.$$

(b)

$$s = \sqrt{\frac{\sum_{i=1}^{12} (x_i - \overline{x})^2}{12 - 1}} = \sqrt{\frac{(2 - 1.25)^2 + \dots + (2 - 1.25)^2}{11}} = 0.866.$$

(c)

$$CV = \frac{s}{\overline{x}} \cdot 100 = \frac{0.866}{1.25} \cdot 100 = 69.28.$$

(d)

1. The data are

ı												
ı	Λ	Λ	Λ	1	1	1	2	2	2	2	2	2
ı	U	U	U	1	1	1	4	4	4	4	4	4

2.

The index is

$$12 \cdot \frac{\binom{100}{3}}{100} = 4.$$

Thus,

$$\frac{1+1}{2}=1$$

is the (100/3)th percentile.

(e) The index is

$$12 \cdot \frac{82}{100} = 9.84.$$

Thus, the 10th data in (d), 2, is the 82th percentile.

- (f) The mode is 2.
- (g) Since

$$Q_1 = \frac{0+1}{2} = 0.5, Q_3 = \frac{2+2}{2} = 2,$$

 $IQR = Q_3 - Q_1 = 2 - 0.5 = 1.5.$

(h)

Minimum	Q_1	Q_2	Q_3	Maximum
0	0.5	1.5	2	2

(i)

-1.75

$$Q_1 = 0.5$$
 $Q_2 = 1.5$ $Q_3 = 2$

4.25

Example 3:

Suppose we have the following data:

		_			
Rent	420	440	460	480	500
	~439	~459	~479	~499	~519
Frequency	8	17	12	8	7
Rent	520	540	560	580	600
	~539	~559	~579	~599	~619
Frequency	4	2	4	2	6

What are the mean rent and the sample variance for the rent?

[Solution:]

 \boldsymbol{f}_k is the frequency of class k, \boldsymbol{M}_k is the midpoint of class k and \boldsymbol{n} is the sample size. Then,

Rent	420	440	460	480	500
	~439	~459	~479	~499	~519
f_k	8	17	12	8	7
M_k	429.5	449.5	469.5	489.5	509.5
Rent	520	540	560	580	600
	~539	~559	~579	~599	~619
f_k	4	2	4	2	6
M_k	529.5	549.5	569.5	589.5	609.5

Thus,

$$\sum_{k=1}^{10} f_k M_k = 34525 \Longrightarrow \overline{x}_g = \frac{34525}{70} = 493.21.$$

For the sample variance,

$$s_g^2 = \frac{\sum_{k=1}^{10} f_k (M_k - \overline{x}_g)^2}{70 - 1} = \frac{208234.287}{69} = 3017.89.$$

Example 4:

- (a) Consider a sample with data values of 10, 20, 12, 17 and 16. Compute the z-score for each of the five observations.
- (b) Suppose the data have a bell-shaped distribution with a mean of $20\,$ and a standard deviation of 5. Use both Chebyshev's theorem and the empirical rule to determine the percentage of data within the range 10-30.

[Solution:]

(a)

Since

$$\overline{x} = \frac{10 + 20 + 12 + 17 + 16}{5} = 15$$

and

$$s = \sqrt{\frac{(10-15)^2 + (20-15)^2 + (12-15)^2 + (17-15)^2 + (16-15)^2}{5-1}}$$

$$=\sqrt{\frac{64}{4}}=4,$$

$$x_{1} = 10: z = \frac{x_{1} - \overline{x}}{s} = \frac{10 - 15}{4} = -1.25,$$

$$x_{2} = 20: z = \frac{x_{2} - \overline{x}}{s} = \frac{20 - 15}{4} = 1.25,$$

$$x_{3} = 12: z = \frac{x_{3} - \overline{x}}{s} = \frac{12 - 15}{4} = -0.75,$$

$$x_{4} = 17: z = \frac{x_{4} - \overline{x}}{s} = \frac{17 - 15}{4} = 0.5,$$

$$x_{5} = 16: z = \frac{x_{5} - \overline{x}}{s} = \frac{16 - 15}{4} = 0.25.$$

(b)

$$[10,30] = 20 \pm 10 = \overline{x} \pm 2s.$$

Thus, by Chebyshev's theorem, within 2 standard deviation, there is at least

$$\left(1-\frac{1}{2^2}\right) \cdot 100\% = 75\%$$

of data within the range 10 - 30.

By empirical rule, there are approximately $\,95\%\,$ of the data values will be within this interval.