Quiz 2

1. (15\%) An oil company has purchased an option on land in Alaska. Preliminary geologic studies have assigned the following prior probabilities.

$$
\begin{gathered}
P(\text { high }- \text { quality oil })=0.1, P(\text { medium }- \text { quality oil })=0.1, \\
P(\text { no oil })=0.8 .
\end{gathered}
$$

After 200 feet of drilling on the first well, a soil test is taken. The probabilities of finding particular type of soil identified by the test follow.

$$
\begin{gathered}
P(\text { soil } \mid \text { high }- \text { quality oil })=0.9, P(\text { soil } \mid m e d i u m-q u a l i t y ~ o i l)=0.8, \\
P(\text { soil } \mid n o \text { oil })=0.05 .
\end{gathered}
$$

Compute the posterior (conditional) probabilities of finding oil, given finding particular type of soil ?.
2. (40\%) Let X be a discrete random variable with the following probability distribution:

$$
f_{X}(i)=\frac{i^{2}}{2 c^{2}}, i=1,2,3,6
$$

and $f_{X}(i)=0$, otherwise, where c is some constant.
(a) Compute c.
(b) $P(X>2)$.
(c) the conditional probability $P(X>2.1 \mid X<4.5)$, i.e., $P(A \mid B)$, where event A is $X>2.1$ and event B is $X<4.5$.
(d) Compute $E(X)$.
(e) Compute $\operatorname{Var}(X)$.
3. (30\%)
(a) (10\%) Consider a binomial random variable X with $n=5$ and $p=0.2$.
(i) Find $P(X \geq 1)$.
(li) Find $P(X=4.5$ or $X=3)$.
(b) (10\%) A retailer of electronic equipment received 20 VCRs from the manufacturer. 2 VCRs were damaged in the shipment. The retailer sold 8 VCRs to some customer. Let the random variable X be the number of damaged VCRS that the customer received. What is the probability that the customer received 7 good VCRs, i.e., $P(X=1)$.
(c) (10\%) Two sport teams play a series consisting of at most 5 games until one of the two teams A or B has won 3 games. Suppose the probability that team A will win any game is 0.5 , i.e., the probability for team B to win being 0.5 . Assuming that the results of the various games are independent of each other. Let the random variable X be the number of games in this series. What is the probability distribution function of X ?
4. (30\%) Given that Z is a standard normal random variable and $X \sim N(1,9)$ is a normal random variable.
(a) $P(-1.5 \leq Z<2.5)$
(b) $P(Z>0.65)$.
(c) $P(Z<c)=0.4495$, find c.
(d) $P(-2 \leq X<7)$.
(e) $P(1 \leq X \leq c)=0.4901$, find c.
5. (20\%) On the average, there are 10 customers at a particular restaurant within 1 hour. Please use Poisson distribution and exponential density to answer the following questions.
(a) Let the random variable X be the number of customers within 8 hours. Find the variance of the random variable X.
(b) What is the probability that there is no customer within 30 minutes?
(c) What is the probability that there are at least 1 customer within 2 hour?
(d) What is the probability that the arrival time between customers is between 15 minutes and 30 minutes?

