1. (20%)

(a) The following data have been collected for a sample from a normal population

		<u> </u>	
2	4	7	11

As $\alpha=0.01$, test the hypothesis $H_0: \mu \geq 8$ $vs. H_a: \mu < 8$ by the *classical* (critical value) method.

(b) A new brand of breakfast cereal is being market tested. The consumers were asked whether they liked or disliked the cereal. You are given their responses below. Let *p* be the proportion of all consumers who will like the cereal.

Test H_0:p=0.64 vs. H_a:p \neq 0.64 based on the *p-value method* at $\alpha=0.05$.

2. (40%)

(a) Consider the following data for two random samples taken from two normal populations with equal variances. Consider the data as the *independent-samples* data.

Sample 1	11	12	8	7	7	9
Sample 2	5	8	6	7	4	

(i) Use t test for the following hypothesis

$$H_0: \mu_1 - \mu_2 \leq 3 \ vs. H_a: \mu > 3$$

by the classical method (critical value) at $\alpha = 0.05$.

(ii) Test the following hypothesis

$$H_0: \mu_1 - \mu_2 = 0 \ vs. H_a: \mu_1 - \mu_2 \neq 0$$

by the confidence interval method with $\alpha = 0.1$.

(b) The following results are sample proportions for two independent samples taken from the two populations.

Sample 1	Sample 2	
$n_1 = 200$	$n_2 = 200$	
$\overline{p}_1 = 0.2$	$\overline{p}_2 = 0.3$	

- (i) Find the 95% confidence interval of $p_1 p_2$.
- (ii) Test H_0 : $p_2 \ge p_1$ vs. H_a : $p_2 < p_1$ at $\alpha = 0.02$ by the p-value method.

3. (15%) The data were selected from each of three normal populations with equal variances. The data obtained follow.

Observation	Sample 1	Sample 2	Sample 3	
1	8	6	8	
2	5	6	7	
3	3	7	9	
4	6	5	6	
5	6	3	5	
Sample mean	5.6	5.4	7	
Sample variance	3.3	2.3	2.5	

Set up the ANOVA table for this problem and test the null hypothesis that the three population means are equal, i.e., H_0 : $\mu_1 = \mu_2 = \mu_3$, at $\alpha = 0.05$.

4. (30%)

- (a) A lottery is conducted that involves the random selection of numbers from 1 to
 - 4. To make sure that the lottery is fair, a sample of 200 was taken. The following results were obtained:

Value	1	2	3	4
Frequency	40	55	60	45

Using chi-square statistic to test the hypothesis that the lottery is fair, i.e.,

$$H_0$$
: $p_1=p_2=p_3=p_4=0.25$ at $\alpha=0.05$, where $p_i, i=1,2,3,4$, is the probability of number i being selected.

(b) Shown below is a 2 x 2 contingency table with observed values from a sample of 100. At $\alpha=0.1$, using chi-square statistic to test for independence of the row and column factors:

		Column		
		X	Y	Total
Row	A	25	35	60
Factor	В	25	15	40
	Total	50	50	100

5. (30%) For the regression model $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, $i = 1, \dots, 6$, $\epsilon_i \sim N(0, \sigma^2)$, with the following results:

$$\overline{x} = 10, \ \overline{y} = 15, \ \sum_{i=1}^{6} (x_i - \overline{x})^2 = 2500,$$

$$\sum_{i=1}^{6} (y_i - \overline{y})^2 = 6400, \ \sum_{i=1}^{6} (x_i - \overline{x})(y_i - \overline{y}) = 2000.$$

- (a) Find the least squares estimate and the fitted regression equation.
- (b) Provide an ANOVA table and use F statistic to test H_0 : $\beta_1=0$ at $\alpha=0.05$.
- (c) Determine R^2 and r_XY .