1. (20\%)
(a) The following data have been collected for a sample from a normal population

2	4	7	11

As $\alpha=0.01$, test the hypothesis $H_{0}: \mu \geq 8$ vs. $H_{a}: \mu<8$ by the classical (critical value) method.
(b) A new brand of breakfast cereal is being market tested. The consumers were asked whether they liked or disliked the cereal. You are given their responses below. Let \boldsymbol{p} be the proportion of all consumers who will like the cereal.

Response Frequency
Liked 1488
Disliked 912
2400
Test H_0:p=0.64 vs. $\mathrm{H}_{-} \mathrm{a}: \mathrm{p} \neq 0.64$ based on the p-value method at $\alpha=0.05$.
2. (40\%)
(a) Consider the following data for two random samples taken from two normal populations with equal variances. Consider the data as the independentsamples data.

Sample 1	11	12	8	7	7	9
Sample 2	5	8	6	7	4	

(i) Use t test for the following hypothesis

$$
H_{0}: \mu_{1}-\mu_{2} \leq 3 \text { vs. } H_{a}: \mu>3,
$$

by the classical method (critical value) at $\alpha=0.05$.
(ii) Test the following hypothesis

$$
H_{0}: \mu_{1}-\mu_{2}=0 \text { vs. } H_{a}: \mu_{1}-\mu_{2} \neq 0,
$$

by the confidence interval method with $\alpha=0.1$.
(b) The following results are sample proportions for two independent samples taken from the two populations.

Sample 1	Sample 2
$n_{1}=200$	$n_{2}=200$
$\bar{p}_{1}=0.2$	$\bar{p}_{2}=0.3$

(i) Find the 95% confidence interval of $p_{1}-p_{2}$.
(ii) Test $H_{0}: p_{2} \geq p_{1}$ vs. $H_{a}: p_{2}<p_{1}$ at $\alpha=0.02$ by the p-value method.
3. (15\%) The data were selected from each of three normal populations with equal variances. The data obtained follow.

Observation	Sample 1	Sample 2	Sample 3
1	8	6	8
2	5	6	7
3	3	7	9
4	6	5	6
5	6	3	5
Sample mean	5.6	5.4	7
Sample variance	3.3	2.3	2.5

Set up the ANOVA table for this problem and test the null hypothesis that the three population means are equal , i.e., $H_{0}: \mu_{1}=\mu_{2}=\mu_{3}$, at $\alpha=0.05$.
4. (30\%)
(a) A lottery is conducted that involves the random selection of numbers from 1 to 4. To make sure that the lottery is fair, a sample of 200 was taken. The following results were obtained:

Value	1	2	3	4
Frequency	40	55	60	45

Using chi-square statistic to test the hypothesis that the lottery is fair, i.e., $H_{0}: p_{1}=p_{2}=p_{3}=p_{4}=0.25$ at $\alpha=0.05$, where $p_{i}, i=1,2,3,4$, is the probability of number i being selected.
(b) Shown below is a 2×2 contingency table with observed values from a sample of 100. At $\alpha=0.1$, using chi-square statistic to test for independence of the row and column factors:

		Column Factor		
		\mathbf{X}	\mathbf{Y}	Total
Row	Factor	A	25	35
	B	25	15	40
	Total	50	50	$\mathbf{1 0 0}$

5. (30\%) For the regression model $y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, i=1, \cdots, 6, \epsilon_{i} \sim N\left(0, \sigma^{2}\right)$, with the following results:

$$
\begin{gathered}
\bar{x}=10, \bar{y}=15, \sum_{i=1}^{6}\left(x_{i}-\bar{x}\right)^{2}=2500, \\
\sum_{i=1}^{6}\left(y_{i}-\bar{y}\right)^{2}=6400, \sum_{i=1}^{6}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=2000 .
\end{gathered}
$$

(a) Find the least squares estimate and the fitted regression equation.
(b) Provide an ANOVA table and use F statistic to test $H_{0}: \beta_{1}=0$ at $\alpha=0.05$.
(c) Determine R^{2} and $r_{X Y}$.

