Quiz 1

1. (30\%)
(a) (20\%) A population proportion is 0.5 . A simple random sample of size 2500 will be taken for (i), and the sample proportion \bar{P} will be used to estimate the population proportion p.
(i) What is the probability that the sample proportion will be within ± 0.01 of the population proportion, i.e. $\boldsymbol{P}(|\overline{\boldsymbol{P}}-\boldsymbol{p}| \leq 0.01)$?
(ii) Suppose the probability that a sample proportion will be within ± 0.005 of the population proportion is 0.95 , i.e., $P(|\bar{P}-\boldsymbol{p}| \leq 0.005)=0.95$. What is the sample size n ?
(b) (10\%) Suppose we have a population of 72 elements, $y_{1}, y_{2}, \cdots, y_{72}$,

11	12	13	14	15	16	17	18	19
21	23	5	7	29	2	24	6	38
3	6	27	28	29	0	2	31	8
42	34	6	8	9	1	3	5	47
32	50	40	24	33	44	45	48	44
47	31	36	39	46	45	39	38	45
27	43	54	36	34	48	23	36	42
34	39	34	35	42	53	28	49	39

Suppose the first row of the table of random number is
13154717445998658683511029310880714151416327179945
(i) Please use systematic sampling to obtain a sample of 3 elements.
(ii) Consider the population as $\mathbf{3}$ stratums (in order), i..e,

Stratum 1: $y_{1}, \cdots, y_{24} ;$ Stratum 2: $y_{25}, \cdots, y_{48} ;$ Stratum 3: y_{49}, \cdots, y_{72} Please use stratified random sampling to obtain a sample of 5 data, 1 data from stratum 1, 1 data from stratum 2, 3 data from stratum
2. (30\%) A sample size of 1600 provides a sample mean of 51 and sample standard deviation of 20.
(a) Develop a 95\% confidence interval for the population mean.
(b) Develop a 70\% confidence interval for the population mean.
(c) If another sample with sample size $\mathbf{n} \geq \mathbf{3 0}$ and sample deviation $\mathbf{3 0}$
provides a 95% confidence interval of which length is the half $(1 / 2)$ of the length of the confidence interval given in (a), find \mathbf{n}.
3. (20\%) The following data have been collected for a sample from a normal population

2	4	6	4

(a) Find the $\mathbf{9 0} \%$ confidence interval for the population mean.
(b) With a 95% confidence interval , what size sample would be required to estimate the population mean with the margin error equal to $\mathbf{0 . 2 5}$?
4. (20\%) A sample of $\mathbf{9 0 0}$ provided a sample proportion of $\overline{\boldsymbol{p}}=\mathbf{0}$. 1 .
(a) Find the 95% confidence interval for the population proportion.
(b) With a 90\% confidence level, what sample size would be required to estimate the population proportion with a confidence interval with the length equal to 0.02?
5. (20\%)
(a) Let X be normal random variable with mean μ and variance 1. For the following hypothesis test $H_{0}: \mu=3$ vs $H_{a}: \mu>3$, i.e., $H_{0}: X \sim N(3,1)$ vs $H_{a}: X \sim N(\mu, 1), \mu>3$, we reject H_{0} as $X>4$. Please calculate α and find the range of β.
(b) Suppose that the sample size $n \geq 30$ and the population variance σ^{2} is known. Please derive the $100(1-\alpha) \%$ confidence interval with the form ($-\infty, c]$ for the population mean, where c is the quantity to be determined. (Hint: using sampling distribution of the sample mean \bar{X})

