Journal of the Chinese
Statistical Association
Vol. 48, (2010) 190-226

DESIGN PATTERNS FOR STATISTICAL
AND GRAPHICAL ANALYSIS

Wen Hsiang Wei
Department of Statistics, Tung Hai University

ABSTRACT

Design patterns, a common discussion topic in software development teams in the
world and one of the techniques to support software reuse, is used to develop statistical
packages JavaStat and StatGraphics. Several well-known patterns used to implement
statistical methods or algorithms are introduced. In addition, based on these patterns,
a new pattern, referred to as Data Analysis, is proposed to help the statisticians develop
code for data analysis. The applications of the proposed pattern are demonstrated via
several examples. In addition, how design patterns can provide a solution deployed in

R is also discussed via illustrative examples.

Key words and phrases: Design Patterns, Interface, Data Analysis Pattern, R, Statis-
tical Software, UML.
JEL classification: C63

1. Introduction

The development of statistical computing environments is an exciting area. Many
statisticians around the world are using statistical packages to reach at conclusions.
Developing useful and modern statistical packages is thus crucial.

One of the commonly used software engineering strategies is software reuse in the
design process. Reuse-based development is now a mainstream approach to software en-

gineering (Sommerville, 2007, p.390). One of the techniques for software reuse is design

DESIGN PATTERNS FOR STATISTICAL AND GRAPHICAL ANALYSIS 191

patterns. Design patterns, originally used in civil engineering and architecture (Alexan-
der et al., 1977) and popularized by GoF (the Gang of Four, Gamma et al., 1995) in
computer science, is a common discussion topic in software development teams around
the world. GoF introduced twenty-three design patterns, which experienced program-
mers have used to design object-oriented software. These patterns enable programmers
to create extensible, powerful, elegant, and most importantly, reusable designs in soft-
ware development process. Several advantages of using design patterns are reducing
risk, saving time and energy, and improving the programmers’ skill and apprehension
(Tate, 2002, pp.7-8). In the classical book by Fowler et al., (1999), several patterns
were adopted for code refactoring (see Fowler et al., 1999, Chapters 8, 10 and 11), which
is another commonly used software engineering technique and can improve the original
code without changing its external behavior. Design patterns have been extensively
used in Java APIs (Application Programming Interface). Furthermore, commonly used
design patterns can be also used for implementing statistical methods or algorithms.
Therefore, the first goal of this paper is to describe how design patterns can be used to
implement statistical methods or algorithms efficiently and effectively. These patterns
implemented with sample code are introduced in Section 2.

A design pattern can be described using a specified format (see GoF, pp.6-8).
Several important sections of a patterns are the name of the pattern, the context in
which it arises, the motivation (or forces), the structure, and the examples along with
the sample code. A new pattern, referred to as Data Analysis, is proposed to help
the statisticians develop code for statistical analysis. Two packages JavaStat and
StatGraphics, consisting of basic modules that provide the user-level functionality for
basic statistics, are based on the pattern. Therefore, the second goal of this paper
is to introduce the new pattern and illustrate how the new pattern can be used to
develop the classes for statistical and graphical analysis. The proposed design pattern
has been incorporated with the framework “Data Analysis Module” proposed by Wei
and Chen (2008). As indicated by several statisticians, Java is a very useful language
for the implementation of a statistical computing environment (see Chambers, 1999,
2000; Kratzig, 2007; Liang and Huang, 2009; Warnes, 2002; West et al., 1998; West et

al., 2004). Therefore, the two packages were implemented using Java. The Java code

192 WEN HSIANG WEI

in the two packages is currently licensed under the terms of the GNU (General Public

License). The two packages can be downloaded from the site

|http5 : //sourceforge.net/projects/javastat/l

To present the proposed pattern in a nutshell, the approach of GoF is adopted in this

article. The overall structure is as follows.
e Name: Data analysis.

e Intent: Define the required classes for data analysis and establish the relationship

among these classes.

e Motivation: In general, for data analysis, there are four key parts, including
the data of interest, the arguments for specifying some attributes related to the
analysis, the procedure for obtaining the required quantities, and the output for
these quantities. The data of interest, arguments, and output are static. On the
other hand, the procedure is dynamic. By suitably arranging classes for the four

parts, a guideline can be given for the fitting process.
e Structure and participants: See Section 3.1.
e Implementation and sample code: See Section 3.2.

e Examples: The pattern can be used to construct new classes for statistical meth-
ods, which is the ultimate goal of the paper. Two examples are presented in

Section 3.3.
e Related patterns: The ones are introduced in Section 2.

Although the sample code for the proposed design pattern and its related pat-
terns are implemented with Java, design patterns can be implemented in other object-
oriented programming languages, for example C++. In addition, design patterns can
fit in with the rather different but widely used language R. A discussion on how design
patterns fit in with R is given in Section 4. Examples are also provided for illustrations.

Finally, a concluding discussion is given in Section 5.

http://sourceforge.net/projects/javastat/

DESIGN PATTERNS FOR STATISTICAL AND GRAPHICAL ANALYSIS 193

2. GOF Design Patterns

Three patterns, Template Method, Strategy, and Factory Method, are introduced
along with sample code in the following sub-sections. These patterns are related to the
proposed pattern and can be used for refactoring. The complete code can be found in

the directory examples.

2.1 Template method

Template Method, framing the skeleton of an application (GoF, pp.325-330), can
be used to implement various parts of a statistical analysis, depending on whether
the problem of interest can be implemented by the sub-classes without compromising
the overall structure of the statistical analysis. For example, suppose that a statis-
tician wants to implement a general regression analysis for obtaining the statistics of
interest, presenting the results, and generating the required plots. The abstract class
AnalysisTemplate defines the required methods and operation. This class plays the

role of the class AbstractClass in the Template Method.

public abstract class AnalysisTemplate{
public Object statistics;
public abstract Object getStatistics(double[] response,
double[][] covariate);
public abstract void output(Object statistics);
public abstract void getPlot(Object statistics);
public void doAnalysis(...){
(a) statistics = getStatistics(response, covariate);
(b) output(statistics);
(c) createPlot(statistics);

}

The code with the letters in the method doAnalysis is symbolic of the steps for
doing regression analysis. The method doAnalysis plays the role of the method Tem-

194 WEN HSIANG WEI

plateMethod, while the three abstract methods getStatistics, output, and createPlot play
the role of the method PrimitiveOperation. The statistic is assigned to the data member
statistics, while the input responses and covariates are assigned to the data members
response and covariate, respectively. Suppose the statistician wants to perform both
a linear regression analysis and a logistic regression analysis, the different output results
for these analyses can be displayed or saved in different ways. The plots to be generated
for these analyses are also different. These variant parts can be implemented by the

following subclasses LinearRegressionAnalysis and LogisticRegressionAnalysis

public class LinearRegressionAnalysis
extends AnalysisTemplate{
public LinearRegression getsStatistics(double[] response,
double[] [] covariate){
return statistics = new LinearRegression(
response, covariate);
b
public void output(Object statistics){

/* Saves the result in a file */

}
public void createPlot(Object statistics){

/* Creates two plots */

public class LogisticRegressionAnalysis
extends AnalysisTemplate{
public LogisticRegression getsStatistics(
double[] response, double[][] covariate){

return statistics = new LogisticRegression(

DESIGN PATTERNS FOR STATISTICAL AND GRAPHICAL ANALYSIS 195

response, covariate);
}
public void output(Object statistics){

/* Displays the result on the terminal */

}
public void createPlot(Object statistics){

/* Creates a residual plot */

The two subclasses play the role of the class ConcreteClass in the pattern. Note
that the method doAnalysis needs not be implemented in these subclasses and thus
code duplication can be avoided. That is, the class AnalysisTemplate provides a
guideline for the statistician to create new classes for similar statistical analyses. Since
the classes for the statistics of interest is highly variable, the class for the argument in
the methods output and createPlot is Object, which is the parent class or superclass of
all Java classes. In addition, since the ways to manage the results and the plots to be
generated are all different, the approach by creating an interface defining the common
quantities and then extracting them in the class implementing the interface might not

work for this example.

2.2 Strategy

The Strategy pattern defines a family of algorithms, encapsulates each one, and
makes them interchangeable (GoF, pp.315-323). Thus, the implementation of the
classes for different statistical methods (algorithms) can be created based on the Strat-
egy pattern. It is very similar to the use of interfaces, which permits users to replace
existing components of some algorithm with versions tuned to the specific problem,
as indicated by Warnes (2002, p.5). Suppose that a statistician wants to conduct a

simulation study to compare the performance of the estimators of the location and

196 WEN HSIANG WEI

dispersion parameters. These estimators include the commonly used sample mean,
variance, median, and median absolute deviation (MAD). The statistician could im-
plement a family of algorithms to obtain these estimators. In the following code,
the interface EstimationStrategy, playing the role of the interface Strategy, de-
fines the required methods locationEstimate and dispersionFEstimate common to the
estimators of interest. The two methods play the role of AlgorithmInterface. The
two classes UnbiasedEstimate and RobustEstimate, playing the role of the class
ConcreteStrategy in the pattern, implement the methods locationEstimate and dis-
persionEstimate for computing the sample mean, variance, median, and MAD, respec-

tively. The input data can be assigned to the data member data.

public interface EstimationStrategy {
double locationEstimate(double[] data);

double dispersionEstimate(double[] data);

public class UnbiasedEstimate implements EstimationStrategy{
/* Calculates the sample mean */
public double locationEstimate(double[] data){...}
/* Calculates the sample variance */

public double dispersionEstimate(double[] data){...}

public class RobustEstimate implements EstimationStrategy{
/* Calculates the sample median */
public double locationEstimate(double[] data){...}
/* Calculates the sample median absolute deviation */

public double dispersionEstimate(double[] data){...}

Like the Template Method pattern, one of the advantages for using the Strategy

pattern is to factor out common operations of the family of statistical methods (algo-

DESIGN PATTERNS FOR STATISTICAL AND GRAPHICAL ANALYSIS 197

rithms). Further, to obtain the mean square error of the estimator of interest, the code

is the following.

public double[] meanSquareError(double[] trueValue,

double[][] data, EstimationStrategy strategy){

for(int i=0; i < data.length; i++){
meanSquareError [0] += Math.pow(strategy.
locationEstimate(datal[i]) - trueValuel[0], 2.0);
meanSquareError[1] += Math.pow(strategy.

dispersionEstimate(datali]) - trueValue[1l], 2.0);

The method meanSquareError, playing the role of ContextInterface, can be ap-
plied to all classes implementing the interface EstimationStrategy. The input ar-
guments include trueValue being the true values of the parameters of interest, data
being the data, and strategy being the estimator. The required mean square error
is assigned to the data member meanSquareError. The statistician needs not create
two different methods for computing the mean square error for different estimators.
The statistician can thus use the family of classes by only referring to the interface
Strategy, which is played by the interface EstimationStrategy in the example. Note
that the method meanSquareError can be also applied for new classes, which will be
created in the future and implement the interface EstimationStrategy. The other
advantage of using the pattern is the connection with the dynamic loading feature in
Java. Dynamic loading allows a computer program to startup in the absence of some
classes, to search for available classes, and then to extend additional functionality.
For example, in JDBC (Java DataBase Connectivity) API (Application Programming
Interface), loading for the database driver is dynamic (Reese, 2000). In this statisti-
cal example, suppose the statistician just gets a compiled class WinsorizedEstimate,

which implements the interface EstimationStrategy and can be used for computing

198 WEN HSIANG WEI

the Winsorized location and dispersion estimates, then, the statistician can dynami-
cally load the class to obtain the robust estimates without modifying the original code,
as illustrated by the following code. The class to be loaded can be specified by the
argument className. The compiled class WinsorizedEstimate can be loaded and ex-
ecuted at runtime by the MS-DOS (Microsoft-Disk Operating System) command “java
examples.strategy.StrategyExample examples.strategy. WinsorizedEstimate”. The ob-
ject loader can be used to load the required class. Then, the loaded class is spec-
ified by statClass, instantiated by the object obj, and then assigned to the object
strategy of which class is EstimationStrategy. Finally, the location and dispersion
estimates can be obtained and assigned to the data members locationEstimate and
dispersionEstimate, respectively. Note that all the classes implement the interface

EstimationStrategy can be loaded dynamically.

public class StrategyExample{

public static void main(String[] className)
throws Exception{

StrategyExample example = new StrategyExample();

/* Initializes the class loader of StrategyExample */
ClassLoader loader =
example.getClass() .getClassLoader();
/* Loads the class className[0] dynamically */
Class statClass = loader.loadClass(className[0]);
Object obj = statClass.newlInstance();
EstimationStrategy strategy = (EstimationStrategy) obj;
double locationEstimate =
strategy.locationEstimate(...);
double dispersionEstimate =

strategy.dispersionEstimate(...);

DESIGN PATTERNS FOR STATISTICAL AND GRAPHICAL ANALYSIS 199

2.3 Factory method

The Factory Method pattern (GoF, pp.107-116) defines an interface for creating
a required object, but lets subclasses instantiate the required class. The pattern is
very suitable for creating common objects obtained by different statistical methods, for
example, the plots or output reports. Suppose a statistician wants to save the output
from a statistical analysis in some files, the output could be a plot, a table, or simply a
numeric value. Thus, these different outputs can be considered as ”products” created
by different factories, such as the factory producing the plots or the one producing the

tables. The following code illustrates the use of the pattern.

public abstract class OutputCreator{
public abstract Object output(...);

public void outputSerialized(...){

/* Saves the output in a file */

outfile.writeObject (output(...));

public class DoubleArrayOutputCreator extends OutputCreator{
/* Generates the numeric output */

public double[] output(...){...}

public class FigureOutputCreator extends OutputCreator{

/* Generates the figure object output */

200 WEN HSIANG WEI

public JFreeChart output(...){...}

The class OutputCreator plays the role of the class Creator in the pattern, while
the two subclasses DoubleArrayOutputCreator and FigureOutputCreator play the
role of the class ConcreteCreator. The method output, playing the role of the method
“FactoryMethod”, produces the output. The different outputs play the role of the
class ConcreteProduct. In addition, the method outputSerialized plays the role of
the method “AnOperation”. The method calls the factory method output to create
the output (Product) and saves it in a file by object serialization, which is a storage
mechanism for objects in Java and can ensure the programmers not to worry about
details of file formats and input/output. The advantage of using the pattern is to
prevent the bind with specific classes. In the above example, rather than create two
outputSerialized methods in the subclasses, the statistician can save different outputs
in some files by using the method in the class OutputCreator. Further, the new output
such as a two-dimensional double array can be created by adding the associated method

in the class DoubleArrayOutputCreator instead of creating a new class.

3. Data Analysis Pattern

3.1 Structure and participants

Based on the patterns introduced in the previous section, a design pattern, re-
ferred to as Data Analysis, is proposed to help the statisticians develop code for data
analysis. The unified modeling language (UML) diagram for the pattern is given in
Figure 1. Note that multiple methods can be implemented in a class, as indicated
by the dots below the method in the figure. The class StatisticalAnalysis defines
the required components or methods in data analysis, as given by the dashed lines
pointing to three classes ObjectArgument, ObjectData, and ObjectOutput. The class
StatisticalAlgorithm defines and implements the various operations for the data

analysis. This class could be the class AbstractTemplate in the Template Method,

DESIGN PATTERNS FOR STATISTICAL AND GRAPHICAL ANALYSIS 201

or the interface Strategy in the Strategy pattern, or the class Creator in the Fac-
tory Method. The classes MethodA, MethodB, and MethodC implement the methods
defined in the class StatisticalAlgorithm. Therefore, these classes can be the class
ConcreteClass in the Template method, or the class ConcreteStrategy in the Strat-
egy pattern, or the class ConcreteCreator in the Factory Method. Since some statisti-
cians may be used to the argument with primitive data type and the others to the one
with object data type, the dashed lines thus point to the classes PrimitiveArgument
and ObjectArgument from the classes MethodA, MethodB, MethodC, and StatisticalA-

lgorithm. The class ObjectArgument can be an enumeration. Then, some methods,

| |
StatisticalAnalysis
o e F-- ol EEE ammae
1 abstract 1
1 r==-= L ¢) I 1
: : 1 +analysisMethod() | :
I i | 1 I
1 1 I I 1
1 1 1
1 1 | | 1
1 1 1
1 1 I I 1
! 1 | | W
I I I I
Input 1 1 I StatisticalAlgorithm I ObjectOutput
A" A4
1 (abstract) I| +outputMethod)
ObjectArgument ObjectData
+argumentMethod() +dataMethod(} r +algorithm() *
1 |
A A I |
| I g [[S |
| |
I A 1
I |
I 1
| |
Input i MethodA MethodB MethodC 1 ConereteOutput
1 +algorithrrr) +algorithrn() +algorithm() 1 +outputMethod()
Primitive Argument ConcreteData I I
“argumentMethod() “+dataMethod(y I I
| |
- = I— . —I -~
I I | S L i 1 I
1 1 r 1
1 1 v 1
1 1 1

Figure 1 Data Analysis Class Relationships

202 WEN HSIANG WEI

playing the role of argumentMethod, can be used to describe these arguments and in
which classes they are used. Similarly, the type of the input data can be very general
such as Object[] or specific as int[]. It is indicated by the dashed lines pointing
to the classes ObjectData and ConcreteData, respectively. The abstraction of the
input data can help the programmers reduce implementation dependencies between
sub-classes and thus develop methods applicable to different statistical problems. Fi-
nally, for the output with general or specific types, the classes ObjectOutput and
ConcreteOutput can be created, as indicated by the dashed lines pointing to them
from the classes StatisticalAlgorithm, MethodA, MethodB, and MethodC. The classes
MethodA, MethodB, and MethodC can also point to the class StatisticalAnalysis di-
rectly. One application, such as the one in Section 3.3.1, is to construct the classes for
general purposes. In such case, these classes only use some classes implementing the

abstract methods defined in the class StatisticalAlgorithm.

3.2 Implementation and sample code

The classes in the packages JavaStat and StatGraphics are based on the proposed
pattern. The classes StatisticalAnalysis and GraphicalAnalysis in the two pack-
ages play the role of the abstract class StatisticalAnalysis in Figure 1. The code

for the two classes is as follows.

public abstract class StatisticalAnalysis{
public Hashtable argument = new Hashtable();
public Object[] dataObject;

public Hashtable output = new Hashtable();

public Hashtable getOutput(){ return this.output; }

public abstract class GraphicalAnalysis{

public Hashtable argument = new Hashtable();

public Object[] dataObject;

DESIGN PATTERNS FOR STATISTICAL AND GRAPHICAL ANALYSIS 203

public Hashtable output = new Hashtable();

public JFreeChart plot;

public JFreeChart getPlot(){ return this.plot; }

The data of interest, input arguments, and output can be specified via the data
members argument, dataObject, and output. In addition, for graphical analysis, the
generated plot can be also assigned to the data member plot. The two default methods
getOutput and getPlot for obtaining the output in data analysis and generated plot are
defined and named analysisMethod. To implement the classes StatisticalAlgorithm,
MethodA, MethodB, and MethodC, the following sub-sections provide examples for a
variety of statistical problems. The complete code can be found in the directory src.
Note that some functions in the examples were named as nouns rather than verbs. It is
similar to the sin and cos methods of the class java.lang.Math having mathematically
conventional names (Gosling et al., 2005, p.146). Also, it is similar to the naming

conventions of some statistical software, such as Splus or R.

3.2.1 Statistical inference for one and two-sample problems

Suppose the parameter 6 is of interest, such as the population mean and proportion
in one-sample problems, or the mean difference and proportion difference in two-sample
problems, the common quantities of interest are confidence interval, test statistic, and
the associated p-value. The statistician could implement these methods in the face
of different statistical problems. However, code duplication can not be avoided and
some generated classes are very similar. Further, for a new class with similar methods,
the statistician needs to implement these various parts in a duplicate way. Another
disadvantage of such implementations is the complexity for code maintenance. Suppose
the formula for the p-value is wrong, then the statistician has to debug all classes with
the methods for computing the p-value, or even worse to check other classes using these
methods. The Data Analysis pattern can be used to avoid code duplication and help

the statistician to develop structured and succinct classes. Further, the resulting classes

204 WEN HSIANG WEI

are easy to maintain.
In general, under the assumption that the null distribution of the test statistic is
symmetric, the confidence interval, test statistic, and the associated p-value can be

expressed by
0 % casg, (6 — 60)/s5, 201 [1 — maz(F,1 = F) + igF + (1 — iy — ig)(1 - F)),

where 6 is the point estimate, ¢, is the critical value at a significance level of «,
tp is the null value of 0, s; is the standard error of the point estimate, SZ is the
standard error of the point estimate as the null hypothesis is true, F' is the cumu-
lative null distribution function evaluated at the value of the test statistic, and two
indexes, i1 and io, are associated with the specification of the alternative hypothesis.
The above equations hold for a variety of inference problems, including one- and two-
sample problems for population means and proportions. Below is the abstract class
StatisticalInferenceTemplate, which defines the required methods associated with

these statistical quantities and how these quantities can be obtained. This class can

provide the class StatisticalAlgorithm in the Data Analysis pattern.

public abstract class StatisticallnferenceTemplate
extends StatisticalAnalysis{
public double pointEstimate;
public double pointEstimateSE;
public double nullValue;
public double [] confidenceInterval;
public double testStatistic;
public double pValue;
public abstract Object pointEstimate(...);

public abstract Object pointEstimateSE(...);
public Object confidencelInterval(...){

confidenceInterval = new double[]{

DESIGN PATTERNS FOR STATISTICAL AND GRAPHICAL ANALYSIS 205

pointEstimate - criticalValue * pointEstimateSE,

pointEstimate + criticalValue * pointEstimateSE};

return confidencelnterval;

¥

public Object testStatistic(...){

testStatistic =

(pointEstimate - nullValue) / pointEstimateSE;

return testStatistic;

}
public double pValue(double[] sideIndex, double cdf){

pValue = 2 * sideIndex[0] *
(1 - Math.max(cdf, 1.0 - cdf)) + sideIndex[1] * cdf +
(1.0 - sideIndex[0] - sideIndex[1]) * (1.0 - cdf);

return pValue;

For computing the point estimates and their standard errors in the one-sample
problem, the abstract methods can be implemented by the two sub-classes of the
abstract class StatisticalInferenceTemplate, OneSampMeanTest and OneSampProp.
The methods pointEstimate in the classes OneSampMeanTest and OneSampProp can be
used to calculate the sample mean and proportion, respectively, while the methods
pointEstimateSE to obtain the standard errors of the two point estimates. Similarly,
for the two-sample means and proportions problems, the methods for obtaining required
point estimates and their standard errors are given in the classes TwoSampMeansTest

and TwoSampProps, respectively. In the class StatisticalInferenceTemplate, the

206 WEN HSIANG WEI

common operations for obtaining the required quantities have been implemented by
the methods confidencelnterval, testStatistic, and p-value and assigned to the data
members with the same names. The point estimate 0, its associated standard errors
s; or s3, and the critical value ¢, are assigned to the data members pointEstimate,
pointEstimateSE, and criticalValue, respectively. The data member nullValue
represents the null value 6y, cdf represents the value of F', and sideIndex repre-
sents the vector of the indexes i1 and i2. On the other hand, the different operations
for the one- and two-sample problems are delegated to the sub-classes. To compute
these quantities, the methods confidencelnterval, testStatistic, and p-value of the class
StatisticalInferenceTemplate can be accessed by these sub-classes. Further, if the
general formulae for computing the required quantities need to be modified, only the

code in the class StatisticalInferenceTemplate needs to be changed.

3.2.2 One way ANOVA and tests for independence

The common statistical quantities for a multiple-sample problem are the test statis-
tic and its associated p-value. Thus, two required methods for obtaining the two quan-
tities are defined in the class StatisticalInference, which plays the role of the class

StatisticalAlgorithm.

public abstract class StatisticalIlnference
extends StatisticalAnalysis{
public abstract Object testStatistic(...);

public abstract Object pValue(...);

Then, the classes OneWayANOVA and ChisqTest, implementing the two required
methods, play the role of the class Method in the Data Analysis pattern.

3.2.3 IRLS (iterative reweighted least squares) in generalized linear models

Consider the standard generalized linear model (Mccullagh and Nelder, 1989) in

DESIGN PATTERNS FOR STATISTICAL AND GRAPHICAL ANALYSIS 207

which each component of the response vector has a distribution taking the form

f (i 01, 6) = Xp{w

where 6; and ¢ are scalar parameters, and a(-), b(-) and ¢(-) are specific functions.

+C(yi7¢)}7 Z.:L"'anv

The dependence of the response y; on the associated explanatory variables x; can be
modeled through the link function g(-), where g(u;) = n; = B'(x;), jt; is the mean of
the response, and 3 are some parameters. The natural link and a(¢) = 1 are assumed
hereafter. Therefore, n; = 6;.

The estimate of the coefficient vector B at the (¢ + 1)’th iteration can be written
as a weighted least squares estimate,

Bt+1 = XtW(Bt)X B XtW(Bt)z(Bt)7

where X is the covariate matrix and both the n x n weight matrix W (3;) and n x 1
vector Z(Bt) depend on the distribution of the response and the link function. The
estimate of the coefficient vector can be obtained by iteratedly computing the weighted
least-squares estimate. The IRLS algorithm can be applied to diverse types of data. As
applying the IRLS algorithm, two basic components, the elements of the weight matrix
and the mean of the response, could vary with different types of data but the steps in
obtaining the estimate of the coefficient vector are invariant. Thus, the various steps
of the IRLS algorithm can be implemented by a class GLMTemplate, which plays the
role of the class StatisticalAlgorithm in the Data Analysis pattern and is shown
below. Omn the other hand, the model-dependent steps for different models, such as
logistic regression model or log-linear model , can be delegated to the sub-classes. In
the class GLMTemplate, the IRLS algorithm has been implemented by the method coef-
ficients. The basic components are assigned to the data members weights and means,
respectively, while the IRLS estimate is assigned to the data member coefficients.
Note that the methods for computing the weight matrix and the mean of the response
are abstract and thus need to be implemented by the sub-classes. Two sub-classes of
the class GLMTemplate, LogisticRegression and LoglinearRegression, for fitting
a logistic regression model and a log-linear model, respectively, then implement the
model-dependent methods weights and means. The two classes play the role of the

class Method in the Data Analysis pattern.

208 WEN HSIANG WEI

public abstract class GLMTemplate
extends StatisticalAnalysis{
public double[][] weights;
public double[] means;
public double[] coefficients;

protected double[] coefficients(...){

weights = weights(...);

means = means(...);

return coefficients;

protected abstract double[][] weights(...);

protected abstract double[] means(...);

3.2.4 Testing survival curve differences

A general class of tests for the comparison of survival curves can be written as
> wjr;, where r; is the difference between the number of deaths and its expected value
in one group at the ¢’th ordered time and w; is the weight function. The variances of
the class of tests can be written as > w?V;, where 3" V; is the variance of the statistic
> r;. Different tests can be obtained by employing different weight functions, for
example, the log-rank test as w; = 1. Thus, the class SurvivalTestTemplate, playing
the role of the class StatisticalAlgorithm in the Data Analysis pattern, defines the
required methods and implements the common steps for the class of tests. Since the
weight function w; is test-dependent, the associated method weight with the input

argument parameter is abstract and needs to be implemented by the subclasses. On

DESIGN PATTERNS FOR STATISTICAL AND GRAPHICAL ANALYSIS 209

the other hand, the method testStatistic calculates the test statistic and its associated
variance and then assigned them to the data members testStatistic and variance,
respectively. Since the calculations of the test statistics for different tests are similar,
these invariant steps are implemented by the method testStatistic. The test-dependent
weight functions for different tests can be implemented by the subclasses LogRankTest
and WilcoxonTest, which play the role of the class Method in the proposed pattern.

The code for these classes is given below.

public abstract class SurvivalTestTemplate
extends StatisticalAnalysis
implements SurvivalTwoSampTestsInterface{
public abstract double weight(double parameter);

public double testStatistic(...){

testStatistic + = weight(...) * ...;

variance + = Math.pow(weight(...), 2.0) * ...;

public class LogRankTest extends SurvivalTestTemplate{

public double weight(double parameter){ return 1.0; }

public class WilcoxonTest extends SurvivalTestTemplate{

public double weight(double parameter){

return parameter;

210 WEN HSIANG WEI

3.2.5 Generating statistical plots

The class PlotFactory defines the method createPlot for generating the plots. Two
classes in the package StatGraphics, Plot2DFactory and Plot3DFactory, implement
the method createPlot for generating a variety of plots. The two classes play the role

of the class Method in the proposed pattern.

3.3 Examples

In this section, two examples implementing Java classes are given to illustrate the

effectiveness and reusability of the proposed pattern.

3.3.1 General statistical tests, regression analyses and statistical plots

Design patterns is good at organizing the classes in a systematical way and so is
the Data Analysis pattern. Based on the Data Analysis pattern, the programmers
can create a class, which can automatically invoke the required statistical methods
based on the input data. In the following example, suppose that the users want to
compare the proportions of two populations and means of three populations. The first
five lines specify the required packages used in the class StatisticalTestsExample
by the key word import. The data were taken from the textbook for basic statistics
by Anderson, Sweeney and Williams (2001, p.408; p.434). The data of the quality-
awareness examination scores for the employees in three different plants (populations)
were assigned to the data member anovaData. In the other case, the numbers of
tax returns with errors from two offices were 35 and 27, while the total numbers of
tax returns were 250 and 300. By simply providing the input data, the users can
conduct the two statistical tests using the class StatisticalTests. These results were
assigned to the data members statObjl and stat0bj2. The results obtained were

quite consistent with the ones given in the book.

DESIGN PATTERNS FOR STATISTICAL AND GRAPHICAL ANALYSIS

211

import static java.lang.System.out;

import java.util.x*;

import javastat.x*;

import static javastat.util.Argument.*;

import javastat.util.x;

public class StatisticalTestsExample

{

public static void main(String[] args)

{

double [][] anovaData = {{85, 75, 82, 76, 71, 85},
{71, 75, 73, 74, 69, 82}, {59, 64, 62, 69, 75, 67}};

Hashtable argument = new Hashtable();

/* One-way ANOVA */
StatisticalAnalysis statObjl = new StatisticalTests(
argument, anovaData).statisticalAnalysis;

/* Two-sample proportions z test */
StatisticalAnalysis statObj2 = new StatisticalTests(
argument, 35, 250, 27, 300).statisticalAnalysis;

out.println("\n" + statObjl.output.toString());

out.println("\n" + statObj2.output.toString());

OQutput:

One

way ANOVA:

{TEST_STATISTIC=9.0, ..., PVALUE=0.002702899474476883}

Two-

sample proportions:

{TEST_STATISTIC=1.846189280616294, ..., PVALUE=0.0648647268570739}

212 WEN HSIANG WEI

To conduct other tests, the users can use the data member argument to spec-
ify the tests of interest. The name of the test can be specified by the statement
argument .put (TEST_TYPE, TEST NAME), for example, argument .put (TEST_TYPE, "R-
ankSum") for Wilcoxon rank sum test. Note that the users need not worry the order of
the required arguments to obtain the required objects. Totally 14 different tests can be
performed by the class StatisticalTests. Similarly, the class RegressionModels can
be used for accommodating different regression models, as illustrated by the following
code. The data were taken from the books by Anderson, Sweeney, and Williams (2001,
p.468) and Collett (1994, pp.290-291). The quarterly sales of 10 Armand’s Pizza Parlor
restaurants located near college campuses were assigned to the data member response,
while the sizes of the student population to the data member covariate. A linear re-
gression analyses to reveal the relationship between quarterly sales and student popula-
tion can be carried out by using the class RegressionModels. The other example was
the study of different chemotherapy treatment of ovarian cancer. The survival times of
26 patients were assigned to the data member survivalTime, while the data member
survivalCensor was the censor indicator. Two factors, the treatment and the age, were
of interest and were specified by the data member survivalCovariate. A Cox propor-
tional hazards regression model was fitted by using the class RegressionModels. These
results were assigned to the data members statObjl and statObj2. Further, the spe-
cific output, such as the estimated coefficients and their associated p-values for the pro-
portional hazards models, can be obtained by the statement stat0bj2.out.get (COEFF-
FICIENTS and stat0Obj2.out.get (PVALUE), respectively, and then were assigned to the
data members coefficients and pValue. The results obtained were quite consistent
with the ones given in the books. Further, the expressions for fitting the other re-
gression models, including logistic regression models, log-linear models, and P-spline

regression models, are analogous.

import static java.lang.System.out;
import java.util.x;
import javastat.x*;

import static javastat.util.Argument.*;

DESIGN PATTERNS FOR STATISTICAL AND GRAPHICAL ANALYSIS 213

import static javastat.util.Output.*;
import static javastat.util.RegressionType.*;
public class RegressionModelsExample
{
public static void main(String[] args)
{
double [] response = {58, 105, 88, 118, 117, 137, 157, 169, 149,
202};
double [][] covariate = {{2, 6, 8, 8, 12, 16, 20, 20, 22, 26}};
double [] survivalTime = {156, 1040, 59, 421, 329, 769, 365, 770,
1227, 268, 475, 1129, 464, 1206, 638, 563, 1106, 431, 855, 803,
115, 744, 477, 448, 353, 377};
double [] survivalCensor = {1, 0, 1, 0, 1, 0, 1, 0, O, 1, 1, O, 1,
0,1, 1,0,1,0,0,1, 0, 0,0, 1, 0};
double [][] survivalCovariate =
{1, 1,1,2,1,2,2,2,2,1,2,2,2,2,1,2,1,1,1,1, 1,
2, 1, 1, 2, 2},
{66, 38, 72, 53, 43, 59, 64, 57, 59, 74, 59, 53, 56, 44, 56, 55,
44, 50, 43, 39, 74, 50, 64, 56, 63, 58}};

Hashtable argument = new Hashtable();

/* Fits a linear regression model */

StatisticalAnalysis statObjl = new RegressionModels(
argument, response, covariate).statisticalAnalysis;

/* Fits a Cox proportional hazards regression model */

StatisticalAnalysis statObj2 = new RegressionModels(
argument, survivalTime, survivalCensor,

survivalCovariate) .statisticalAnalysis;

double [] coefficients = (double[]) statObj2.output.get(COEFFICIEN-
TS);

214 WEN HSIANG WEI

double [] pValue = (double[]) statObj2.output.get(PVALUE);

out.println("\n" + statObjl.output.toString());

out.println("Coefficients: " + coefficients[0] + " " + coefficients
[11);
out.println("P values: " + pValue[O] + " " + pValuel[1l]);
X
X
Output:

Linear regression:
{R_SQUARE=0.902733630006348, F_STATISTIC=74.24836601306407,...,
F_PVALUE=2.5488662852901633E-5, ...}

Cox proportional hazards regression:
Coefficients: -0.7959324065540736 0.1465698417095117
P values: 0.20856753917100646 0.0013912304425554023

In addition to statistical methods, a variety of plots can be displayed by only us-
ing the class StatisticalPlots, as illustrated by the following code. The data of
interest are a sample of 50 computer purchases. The qualitative data and associated
frequency distribution are assigned to the data members category and data, respec-
tively. The generated pie plot can be assigned to the data member graphicalAnalysis
and saved to the data member plot. The plot is put in a frame pf and then is dis-
played by the statement in the next line. For the other plots, the users can specify the
required arguments and modify the statement for generating the pie plot, for example,
argument .put (PLOT_TYPE, BAR) for creating the bar plot. A variety of plots generated

by the class StatisticalPlots are presented in Figure 2.

import java.util.x*;
import org.jfree.chart.*;
import statgraphics.x*;

import static statgraphics.util.Argument.x*;

DESIGN PATTERNS FOR STATISTICAL AND GRAPHICAL ANALYSIS 215

import static statgraphics.util.PlotType. *;
import statgraphics.util.x*;

public class StatisticalPlotsExample

{
public static void main(String[] args)
{
/* Specifies the required argument and data */
String[] category = {"Apple", "Compaq", "GateWay 2000",
"IBM", "Packard Bell"};
double[] data = {13, 12, 5, 9, 11};
Hashtable argument = new Hashtable();
/* Specifies the required plot */
argument .put (PLOT_TYPE, PIE);
GraphicalAnalysis graphicalAnalysis = new StatisticalPlots(
argument, category, data).graphicalAnalysis;
JFreeChart plot = graphicalAnalysis.plot;
PlotFrame pf = new PlotFrame("Bar Plot", plot, 500, 270);
new PlotFrameFactory() .putPlotFrame(pf);
}
+

For using a variety of tests, regression methods, and statistical plots, only three
classes StatisticalTests, RegressionModels, and StatisticalPlots are required.
These three classes , playing the role of the class Method in the Data Analysis pattern
and mainly handling the input arguments and data, are not very complicated. The

examples for the use of the three classes can be found in the directory examples.

216

WEN HSIANG WEI

[20 Bar Piot Cia 55 90 Bar Plot

o =" [[] 30 pie Plot

Pie Plot

[< Porie 15 = Compaa— 12 = Gatoiiar 20035 165 = Fadkard 51 11] < Forls 15 @ Gompan 12 = GatoWar 20005 W5 = Feckard Bl 11
| sevwroror || saonssve || saoscrns || saescurec | || | smvosoror || smwsosve || saveasrms || savoasures
[ristogram o 51 1ime senes piat o

Filo Filo.

Histogram

Fraquengy
Stoc Price

Azo05 mAZo0s Azoos AAz00s | A-2008
75 100 128 190 175 200 226 200 275 300 328 1aarn

= s m s = company s = Gompany s

SavonsPOr || Savessvc || Savesspnc || Savess e SovensPDr || SavenssvG || save s
e
1 Bur Pt w e =
rio

Box Plot

mb®C DmEmFucmHm mlEKm

«Box Flot

Savcasror || Saveassve || saveason || saveas sEc saversPDE || savonssve |[savonsens ||

5] seatter piot 2 7 7 5] Esploratory Data Analysis
Tile Filo

Scatter Diagram Ogive Plot
- 200
o0 - z 178
&5 -2 & = 5 150
o o - g 128
3 . 5 100
& - ps g s gz

wl = . E 5o

as = ue

5 i =

W0 4s an a as a0 as Ao Wo vde tsn /s 20 mis wan 24 @uo wa aso
Number of Gommereials AuditTime in Days

Save As PDF Save AS SVG Save As PNG Save s JPI Save as POF Save as SVG Save s PNG Save as JPEG
| Lomoerr [somorees [somsre Jl erooerre |] [ommasese || ssmersve [smsns][somnies]

=3
] scree plot i [=] Mathem aticat Functions

Mathematical Functions

100

78

0

a8

E o
0
“100

20 B o S] 5 o 15 20

x
— Fowerfunction — 8ine Functon
[save as por | Sove a0 || Save as upES Sovmnspor || Saveassvo || sewesono || Sewe s ures

Figure 2 Plots Generated by StatGraphics

DESIGN PATTERNS FOR STATISTICAL AND GRAPHICAL ANALYSIS 217

3.3.2 Regression model selection criterion for the data with correlated errors

A database management system (DBMS) is a software package for managing a
computerized database. There are several advantages of using the DBMS approach
(Elmasri and Navathe, 2007, pp.17-22). A relational DBMS implements the relational
model, which was proposed by Codd (1970) and enjoyed great popularity (Elmasri and
Navathe, 2007, p.141; p.233) due to its simplicity, mathematical foundation, and the
structured query language (SQL).

In Wei (2009), a class of regression model selection criteria for the data with corre-
lated errors was proposed. The algorithms for calculating a variety of model selection
methods are quite similar, mainly depending on the weighted residual sum of squares
and penalty function. Now, suppose a statistician wants to construct a class of robust
weighted criteria (Hampel et al., 1986, p.367) in weighted linear regression or smooth-
ing based on the robust weighted residual sum of squares, the simulated data and the
real data were stored in two DBMS, MySQL (4.0.15) (http://dev.mysql.com/down
loads/) and PostgreSQL (8.0.0) (http://www.postgresql.org/), respectively. In ad-
dition, the original data are available from http://web.thu.edu.tw/wenwei/www/my
sqlData.txt and http://web.thu.edu.tw/wenwei/www/postgreData.txt. This stat-
istician only needs to create the following class, which plays the role of the class Method

in the Data Analysis pattern.

import static java.lang.System.x*;
import java.util.*;
import static javastat.regression.PsiFunction.*;
import static javastat.regression.SelectionCriterion.x*;
import javastat.regression.*;
import static javastat.util.Argument.*;
import javastat.util.x*;
public class RobustSelectionCriterionExample
extends SelectionCriterionTemplate{
public double c;

public double[] residuals;

218 WEN HSIANG WEI

public RobustSelectionCriterionExample(double c)
{

this.c = c;

public Double weigthedRSS(Hashtable argument, Object ...dataObject){
residuals = ((WeightedSelectionCriterion)
new WeightedSelectionCriterion(argument, dataObject).
statisticalAnalysis) .residuals;
weightedRSS = 0.0;
/* Robust weighted residual sum of squares */
for(int i = 0; i < residuals.length; i++)
if (Math.abs(residuals[i]) <= ¢)
weightedRSS += Math.pow(residuals[i], 2.0);
else
weightedRSS += 2.0 * ¢ * Math.abs(residuals[i]) -
Math.pow(c, 2.0);

return weightedRSS;

public Double penalty(Hashtable argument, Object ...dataObject)
{

return new WeightedSelectionCriterion().penalty(argument, dataObject);

public static void main(String[] args){

DataManager dm = new DataManager();

BasicStatistics bs = new BasicStatistics();

Hashtable argument = new Hashtable();

DESIGN PATTERNS FOR STATISTICAL AND GRAPHICAL ANALYSIS 219

/* Gets the simulated data from MySQL */

String[] [] mysqlData = new DBLoader("jdbc:mysql://localhost/data",
"root", "", "SELECT * FROM data").data;

double[][] data = dm.transpose(dm.stringToDouble (mysqlData)) ;

double[] response = datal0];

double[] [] covariate = dm.getData(l, data.length - 1, O,
data[0] .length - 1, data);

double[] [] weightMatrix = dm.inverse(bs.covarianceAR1(
response.length, 0.2, 1));

/* Gets the robust AIC in weighted regression */

double robustAIC = (Double) new RobustSelectionCriterionExample(1.5).
weightedSelectionCriterion(argument, weightMatrix, response, covari
ate);

out.println("The robust AIC is " + dm.roundDigits(robustAIC, 3.0));

/* Gets the real data from PostgreSQL */

String[] [] postgreData = new DBLoader (
"jdbc:postgresql://localhost/weitest", "wenwei", "1234",
"SELECT * FROM data").data;

data = dm.transpose(dm.stringToDouble(postgreData)) ;

response = datal[0];

double[] covariate2 = datall];

argument . put (SMOOTHING_PARAMETER, 1000);

argument .put (DIVISIONS, 10);

argument . put (DEGREE, 3);

argument.put (ORDER, 2);

/* Gets the robust GCV in spline smoothing with c=1.5 */

double robustGCV = (Double) new RobustSelectionCriterionExample(1.5).
weightedSelectionCriterion(argument, response, covariate2);

out.println("The robust GCV is " + dm.roundDigits(robustGCV, 3.0));

220 WEN HSIANG WEI

Output:
The robust AIC is 1.329
The robust GCV is 1.126

The class SelectionCriterionTemplate in the package javastat defines the ab-
stract methods weightedRSS and penalty and implements the default method weight-
edSelectionCriterion. This class plays the role of the class StatisticalAlgorithm.
The data member c is the benchmark for the truncation of the residuals, while the
associated residuals are assigned to the data member residuals. The robust weighted
residual sum of squares can be obtained by loops and assigned to the data member
weightedRSS. Since various steps for computing different selection criteria have been
implemented by the class SelectionCriterionTemplate, the two required methods
weightedRSS and penalty can be created by the statistician with only a few additions.

To obtain the robust selection criteria with the default method main, the class
DBLoader can be used to loads the data from MySQL and PostgreSQL first and then
these data are assigned to the data members mysqlData and postgreData, respectively.
The loaded string data are converted to double arrays and then are assigned to the
data member data. The responses for fitting the weighted linear regression model
and penalized regression model are assigned to the data member response, while the
covariates are assigned to the data members covariate and covariate2, respectively.
The variance-covariance matrix for fitting the weighted linear regression model can be
obtained and then be assigned to the data member weightMatrix. The robust AIC
criterion for the weighted regression model can be computed by using the constructor
RobustSelectionCriterionExample with the pre-specified truncation constant equal
to 1.5. On the other hand, after using the data member argument to specify the the
value of the smoothing parameter equal to 1000, the number of intervals on the x-
domain equal to 10, the degree of the piecewise polynomial equal to 3, and the number
of the differences equal to 2, the robust GCV criterion for the penalized regression

model can be obtained similarly.

DESIGN PATTERNS FOR STATISTICAL AND GRAPHICAL ANALYSIS 221

4. Design Patterns and R

The design patterns introduced in Section 2 can be deployed using R. In fact, the
package sandwich introduced by Zeileis (2006) is an example of the modification of the
Template Method pattern. The role of function sandwich in the package is similar to
the method TemplateMethod, while the functions bread. and meat. in the argument list
and the function estfun play the role of PrimitiveOperation in the class AbstractClass.
Similarly, based on the S4 class, the code for the example in Section 2.1 can be rewritten

in R, as illustrated in the following.

setClass(
"AnalysisTemplate",
representation(getStatistics = "function",
output = "function",
createPlot = "function",
doAnalysis = "function"),
prototype = list(
doAnalysis = function(response, covariate,
getStatistics, output, createPlot){
statistics =
getStatistics(response, covariate)$statistics
output (statistics)

createPlot (statistics)

b
)
setClass (
"LinearRegressionAnalysis",
contains = "AnalysisTemplate",

prototype = list(
getStatistics = function(response, covariate){

list(statistics = lm(response ~ covariate))

222 WEN HSIANG WEI

s
output = function(...){

/* Saves the result in a file */

1,
createPlot = function(obj){

/* Creates two plots */

i9)
)
setClass(
"LogisticRegressionAnalysis",
contains = "AnalysisTemplate",

prototype = list(
getStatistics = function(response, covariate){

list(statistics = glm(response ~ covariate,
family = binomial(link = logit)))

3,

output = function(obj){

/* Displays the result on the terminal */

s
createPlot = function(obj){

/* Creates a residual plot */

b

The class AnalysisTemplate defines the required functions getStatistics, output,

and createPlot. In addition, the function doAnalysis in the class implements var-

DESIGN PATTERNS FOR STATISTICAL AND GRAPHICAL ANALYSIS 223

ious steps of the algorithm. The class AnalysisTemplate and its two subclasses
LinearRegressionAnalysis and LogisticRegressionAnalysis play the same roles
as their counterparts in Section 2.1. The key difference between the two languages in
implementing the design pattern is that the functions playing the role of the method
Primitive Operation need to be passed as the arguments into the function playing the role
of the method TemplateMethod. The R code for the other patterns with the examples
similar to the ones introduced in Section 2.2 and Section 2.3 along with the complete

code for the Template Method pattern can be found in the directory R-examples.

5. Discussions

A design pattern systematically names, motivates, and explains a general design
that addresses a recurring design problem in object-oriented systems, as indicated by
GoF (1995, p. 360). A good design pattern can be deployed successfully in a software
project. In addition, refactoring based on some design patterns can be used to improve
the quality of the original code. Based on the proven patterns, the proposed pattern
aims to provide a sensible solution for data analysis. Although the proposed pattern
is mainly applied to statistics, it can be also applied to numerical analysis involving
input data, algorithms, and output in other branches of science.

Although there are several advantages of using design patterns, design patterns is
not a panacea. A commonly used design pattern might be out of favor over time or
in new context (Brown et al., 1998, pp.15-18). In such case, the solution provided
by the design pattern might be problematic, i.e. “antipattern” solution. One possible
solution is to use the antipatterns technique, which identifies the cause and provides
the refactored solution.

StatGraphics is based on a high-quality open-source library JFreeChart (see
Gilbert and Morgner), which consists of a variety of charts. More plots based on
the package can be added to StatGraphics. JavaStat performs the probability cal-
culations based on a high-quality package JSci.maths.statistics of an open-source
library JSci (see Hale et al.). The primary goal of the library tries to achieve an

accurate representation of the underlying science, including biology, chemistry, mathe-

224 WEN HSIANG WEI

matics, and physics. Thus, the statisticians could develop new methods incorporated

with the ones used in other branches of science.

References

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., and
Angel, S. (1977). A Pattern Language. New York: Oxford University Press.

Anderson, D. R., Sweeney, D. J., and Williams, T. A. (2001). Contemporary Business
Statistics with Microsoft Excel. South- Western.

Brown, W. J., Malveau, R. C., McCormick H. W., and Mowbray, T. J. (1998). Anti-
Patterns: Refactoring Software, Architectures, and Projects in Crisis. New York:

John Wiley and Somns.

Chambers, J. M. (1999). Computing with data: concepts and challenges. The Amer-
ican Statistician, 33, 73-84.

Chambers, J. M. (2000). Users, programmers, and statistical software. Journal of

Computational and Graphical Statistics, 9, 404-422.

Codd, E. (1970). A relational model for large shared data banks. Communications of

the Association for Computing Machinery, 13:6.

Collett, D. (1994). Modelling Survival Data in Medical Research. New York: Chap-

man and Hall.

Elmasri, R. and Navathe, S. (2007). Fundamentals of Database Systems. Addison
Wesley.

Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts, D. (1999). Refactoring:
Improving The Design of Existing Code. Reading, MA: Addison- Wesley.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: Ele-
ments of Reusable Objected-Oriented Software. Reading, MA: Addison Wesley.

Gilbert, D. and Morgner, T. JFreeChart, URL:http://www.jfree.org/.

DESIGN PATTERNS FOR STATISTICAL AND GRAPHICAL ANALYSIS 225

Gosling, J., Joy, B., Steele, G., and Bracha, G. (2005). The Java Language Specifica-
tion. Addison Wesley.

Hale, M., Cannings, R., Cross, D., Kooten, J. V., Lemire, D., Smith, T., Carr, J.,
Gonccalves, R. A., Dietrich, B, and Martin-Michiellot, S.. JSci, URL:http:

//jsci.sourceforge.net/.

Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., and Stahel, W. A. (1986). Robust

Statistics: The Approach Based on Influence Functions. New York: Wiley.

Kratzig, M. (2007). A software framework for data analysis. Computational Statistics
and Data Analysis, 52, 618-634.

Liang, F. Q. and Huang, C. W. (2009). Java micro edition technology for statistical
and graphical analysis. Journal of the Chinese Statistical Association, 47, 159—
173.

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. Chapman and
Hall.

Reese, W. (2000). Database Programming with JDBC and JAVA. O’Reilly.
Sommerville, I. (2007). Software Engineering. New York: Addison- Wesley.
Tate, B. (2002). Bitter Java. Greenwich, CT: Manning.

Warnes, G. R. (2002). HYDRA: A Java library for Markov chain Monte Carlo. Journal
of Statistical Software, 4, URL:http://wuww.jstatsoft.org/v07/104/.

Wei, W. H. and Chen, G. J. (2008). JavaStatSoft: Design patterns and features.
Computational Statistics, 23, 235—251.

Wei, W. H. (2009). On regression model selection for the data with correlated errors.
Annals of the Institute of Statistical Mathematics, 61, 291-308.

West, R. W., Ogden, R. T., and Rossini, A. J. (1998). Statistical tools on the world
wide web. The American Statistician, 52, 257-262.

226 WEN HSIANG WEI

West, R. W., Wu, Y., and Heydt, D. (2004). An introduction to StatCrunch 3.0.
Journal of Statistical Software, 9, URL:http://www. jstatsoft.org/v09/105/.

Zeileis, A. (2006). Object-oriented computation of sandwich estimators. Journal of

Statistical Software, 16, URL:http://www. jstatsoft.org/v16/i09/.

[Received April 2010; accepted September 2010.]

