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ABSTRACT

For the function from a real separable Banach space into a real separable Banach
space, i.e., a possibly nonlinear operator, in nonparametric regression, theoretical re-
sults are established for the estimator based on finite dimensional approximation. A
new concept “approximatability” is presented and the operators of interest are proved
to be approximatable under different situations. The results concerning both consis-
tency and weak convergence of the estimator are obtained. Statistical applications of
these theoretical results are given.
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1. Introduction
Consider the following nonparametric regression model,
y=F(z) +e

where F' is usually a real-valued function on R, x € RY, and both y and € are real-
valued random variables.

The above nonparametric regression model can be generalized by relaxing the as-
sumptions imposed on the domain and range of the function F. In this article, let F
defined on some subset of X be a Y-valued function and fall in a real separable Banach
space V with a known Schauder basis (Enflo, 1973; Kreyszig, 1978, p. 69; Morrison,
2001, Proposition 5.3) and both y and e are Y-valued random variables, where both X
and Y are real separable Banach spaces. Relatively few theoretical results have been
done for the resulting estimators based on finite dimensional approximations in such
general setting. The goal of this article is to develop the theoretical results for the “gen-
eralized” nonparametric regression models. The unknown operator F' = Z;’il Bjpj is
of interest, where {¢;} is the Schauder basis and (; are the coefficients. To estimate
F', the coefficients 3; need to be estimated based on the data available first. In prac-
tice, the finite dimensional approximations of F), i.e., Z;nzl Bjpj, can be used as the
objective operator to be estimated. Thus, the methods, usually involving some numer-
ical algorithms, can be employed to estimate the finite number of coefficients. As the
resulting estimator Z;”zl angaj is an accurate estimator of Z;nzl Bjpj, for example,
the consistent estimator, it can be also an accurate estimator of F' for large m due to
Zjoim +1 8594 mjo 0, where an are real-valued random variables and n is a positive
integer, usually the number of data available. In next section, Theorem 2.1 and its
associated corollaries indicate that the estimated operator (the minimizer) of a convex
objective functional based on the finite dimensional approximations of V might con-
verge to the one based on the original infinite dimensional space in different situations.
In Section 3, the consistency of the estimator Z;n:l an‘ﬂj is proved. Furthermore, some
sufficient conditions for the convergence of the sequence of estimators in distribution
to a centered Radon Gaussian variable (Ledoux & Talagrand, 1991, Chapter 3) are
established in this section. Finally, the theoretical results given in Section 2 and Sec-
tion 3 can be employed in a variety of statistical models, including the nonparametric
regression models with or without measurement errors and the models for fitting the
functional data with or without the use of a differential equation. These statistical
applications are presented in Section 4. Hereafter, all the normed spaces or the inner
product spaces of interest are over the real field and the notation || - ||y is denoted as
the norm of the normed space W. As W is a Hilbert space, the norm induced by the

inner product is || - ||y = (< -, >w)Y2.
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2. Finite Dimensional Approximation

The concept of finite dimensional approximation is described first.

Definition 2.1. Let S be a non-empty subset of a normed space U. w in S is
approzimatable by a sequence {Up, : U, € Uy, NS} if the sequence satisfies

Uy —> U,
m—r0o0
where Uy, are finite dimensional subspaces of U. An operator T : S — W taking values
on a normed space W is approximatable at u by {un,} if
T(tup) — T(u).
m—r0o0

As § =V, any element u in S and any continuous operator 7" on S can be approx-
imatable by the sequence of which elements are linear combinations of the Schauder
basis vectors. However, the approximatability result might not be true if the set S is
not the space V or T' is not continuous on S. It turns out that the convexity of the set
S and the functional T', i.e., W = R, plays a crucial role for the approximatability of
the statistical estimator .

A commonly used method to estimate true F is to find the minimizer(s) of some
objective functional, for example, the minimizer of the residual sum of squares. Let
S be a non-empty closed convex subset of V and T : S — R be convex, lower semi-
continuous, and proper, where V is assumed to be reflexive in this section. As S is
unbounded, 7" is assumed to be coercive. The existence of the minimizer(s) of a certain
objective functional on V' is well established (Deimling, 1985, Theorem 25.1; Ekeland
& Témam, 1999, Proposition 1.2, p. 35). By Proposition 1.2 of Ekeland & Téman
(1999), the minimizer F' € S of the objective functional T exists as indicated by the

following lemma.

Lemma 2.1. F = argminT(F) exists. Furthermore, I is unique if T is strictly
FeS
convex on S.

Based on the above lemma, the finite dimensional approximation of F exists as
indicated by the following theorem.

Theorem 2.1. Let F € S°, where S° is the interior of S. There exist subspaces
Vim of V' spanned by the finite number of elements of the Schauder basis {¢;} and a

sequence of minimizers {Fy, = argminT(F)} such that T is approzimatable at F by
FeVnns

{F,}. As T is strictly conver, the unique minimizer F' is approzimatable by {F,}.
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PROOF. Because F' € S°, for every € = 1/m > 0, there exists an N; depending
on m such that ||Fm — F||V < €1 as ny > Ny, where F,, = Z?QI jpj € S. Note that

{nm :m =1,2,...} can be chosen to be a nondecreasing sequence. That is, F, — F.
m—0o0

Moreover, because T is continuous at F' by Corollary 2.5 (p. 13) of Ekeland & Témam
(1999), for every e > 0, there exists an Ny such that |T'(E,,) — T(F)| < e for m > Na,

~ ~

ie., T(Fy) — T(F). Let Vi, = span{pj,j =1,...,nmy}. Since V;,, NS is a nonempty

closed convex subset of V, F},, = argmin T'(F) exists by Proposition 1.2 of Ekeland &
FeVnNs

Téman (1999). If E,, = F,,, then T(E,,) = T(Fy,) — T(F). On the other hand, if
m—0o0
Eyy # F, let T(E,,) — T(Fy) = Ay, < 0. Then,

~

0 < T(Fp) —T(F) = T(Fp) —T(Ey) 4+ T(Fp) —T(F) < A, + €.
This implies |A,,| < €2 and hence |T'(Fy,) — T(Fp)| < e2. T(Fpn) — T(F) then. As

T is strictly convex, F and F,, are both unique by the above proposition and hence
F, — F.

m—r0o0

¢

The approximatability holds under different situations, including different choices
of V' and the objective functional T, as indicated by the following corollari he
first corollary indicates that the above theorem holds for the objective functional T'
depending on the difference of F' and some usually pre-specified operator Fj.

Corollary 2.1. Let V be a separable Hilbert space and ¢ : R™ — R be a nonde-
creasing, convex, lower semi-continuous, coercive, and proper function, where RT =
{t:t>0,t € R}.

(a) If T(F) = ¢(|F — Follv), then F exists and T is approzimatable at F by {Fp,},
where F' € § and Fy € V.

(b) If ¢ is strictly increasing and T(F) = ¢(||F — Fy|[%,), 1 < p < oo, then F is unique
and approzimatable by {Fy,}.

PrOOF. Since V, the separable Hilbert space, is also a reflexive Banach space
with a Schauder basis, it suffices to prove that T' is convex or strictly convex, lower
semi-continuous, coercive, and proper. Then, the conditions in Theorem 2.1 hold.

Because ¢ is coercive and proper, T is coercive and proper thus. Since the normed
function is a convex function, then for 1, Fy € Sand 0 < a <1,

T [aF) + (1 — ) F3]
¢ al|lF1 — Follv + (1 — o)|[F2 — Follv]

ad([[F1 — Follv) + (1 = a)o([|[ F2 — Follv)
aT(Fl) + (1 — a)T(Fg)

IN A
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Thus, T is convex. To prove lower semicontinuity of T', there exists a d such that for
every € > 0 and 2z € R, ¢(z) < ¢(2*) + € as |2* — 2] < §. Thus, for any F € S and
||F* — F[ly <6, then

T(F)
= O(|F — Follv)
< o(||F" FoHv)
= T(F*) +

owing to
I F* = Folly = |F = Follv| < [F7 = Fllv.

Therefore, T is lower semicontinuous on S.
As ¢ is strictly increasing, by strict convexity of |||}, on S (Bauschke & Combettes,
2011, Example 8.21), 1 < p < oo,

T [aF 4 (1 — a)Fy]
¢ [al|Fy = Folly, + (1 = a)||[F2 — FollY]
< oT(F1)+ (1 — )T (Fs),

for F1,F, € S, F| # Fy, and 0 < o < 1, ie., T(F) = ¢(||F — Fyl[},) being strictly

convex.

&

A Hilbert-Schmidt operator F': X — Y (Da Prato & Zabczyk, 1992, Appendix C)
is a bounded linear operator with the norm

o 1/2
| Flrs = (ZHF(%)H%) ,

i=1

where X and Y are both separable Hilbert spaces, {e;} is the orthonormal basis of
X, and || - ||y is the norm induced by the inner product < -,- >y. The space consist-
ing of Hilbert-Schmidt operators is a separable Hilbert space with the inner product
< Fi,Fy >ps=Y oy < Fi(e;), Fa(e;) >y for Fi, F5 in the space. The above corollary
can be applied to the Hilbert-Schmidt operator involving random vectors.

Corollary 2.2. Let ¢ : RT™ — R be a nondecreasing, convex, lower semi-continuous,
coercive, and proper function and V be the inner product space of Hilbert-Schmidt
operators from X toY with the norm || - ||gs, where X is the separable Hilbert space



FINITE DIMENSIONAL APPROXIMATION IN NONPARAMETRIC REGRESSION191

and Y 1is the spaces of k-dimensional real random vectors of which elements are square-
integrable, i.e., having the second moments, and ||y|ly = [Zle E@W))V? for y =

(Y1, ,yp) €Y. Let
S={F:E[F(z)]=E[F)],F,.Fy € V.x € X}.

(a) If T(F) = ¢(|F — Follgs), then F exists and T is approzimatable at F by {EF,,}.
(b) If ¢ is strictly increasing and T(F) = ¢(||F — Fo|l;6), 1 < p < o0, F' is unique and
approximatable by {F,}.

PROOF. §' is convex because for F1,Fo € S,z € X, and 0 < o <1,
ElaF(z) + (1 — a)Fy(z)] = E[Fo(z)],

and hence aF + (1 — a)F» € S. Next is to prove that S is closed. Let F,, — F,

n—oo

ie., ||F, — FHHSn?OO, where F,, € S and F' € V. Because ||F,, — F|| < ||F,, — F||us
by Corollary 16.9 of Meise & Vogt (1997), ||F.(z) — F(x)Hyn:))o 0, where || - || is the
usual operator norm for the bounded linear operator. This gives that E[F,(x)] =
E[Fy(z)] — E[F(z)] and hence E[F(z)] = E[Fy(z)]. Hence, F € S and S is closed.
The results follow by Corollary 2.1.

&

Remark 2.1. In linear regression, it is well known that the least squares estimate
is also a BLUE (best linear unbiased estimate, Seber, 1977, Theorem 3.2). In fact, the
existence of the BLUE is a special case of the above corollary. Let x = (x1,---,Xp)"
be a p-dimensional random vector with E(x) = 0 and the variance-covariance matric
equal to o1, where 8 € RP and I is the identity matriz. Let the one-dimensional Hilbert
space X = {ax : a € R} with the inner product < ayx,asx >x= ajaz Y s BE(x?) and
the orthonormal basis e = x/||x||x, where a1,a2 € R and || - ||x is the norm induced
by the inner product. Consider the bounded linear operators F' : X — Y defined by
F(x)=1'x and Fy : X =Y defined by Fy(x) = ' E(x) = 0, l,c € RP, where Y is the
(p+1)-dimensional Hilbert space of real-valued random variables spanned by {x;} U{1}
with the inner product < yi,y2 >y= E(y1y2) for y1,y2 € Y and the induced norm
|| - [ly. Note that both F' and Fy are Hilbert-Schmidt operators because ||F(e)|ly < oo
and ||Fo(e)|ly < oo. Further, the space V is a (p+1)-dimensional Hilbert space and
hence a separable and reflexive Banach space. For any given c, the set S given in the
above corollary consists of the "unbiased” operators with expected values equal to c'6
aty, ie, S ={F: BF()] = 0 = BR()]}. T(F) = 6(|F — Folys) = Var(i'y)
18 strictly convex and hence there exists a unique minimizer, i.e., the BLUE with the
minimum variance, where ¢ : RT™ — R is given by ¢(s) = ||x||%s,s € RT.
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Reproducing kernel Hilbert space (Aronszajn, 1950) has been extensively used in
nonparametric regression (Berlinet & Thomas-Agnan, 2004, Chapter 3). As the space
V' is a separable reproducing kernel Hilbert space, the following corollary can be applied

to some optimization problems in nonparametric regression.

Corollary 2.3. Let S be bounded and V' be a separable reproducing kernel Hilbert
space of real-valued functions defined on the subset of the separable Banach space X with
a reproducing kernel R(-,-) and an inner product < -,- >y . Let ¢; : R — R be convez,
lower semi-continuous, and proper. Let T(F) = > " | ¢; [F(x;)], where Ry, = R(-,x;)
are not all equal to the zero element in V.

(a) F exists and T is approzimatable at F by {Fy,}.
(b) If S is the subset of Sgp and ¢; are strictly convex, then F s unique and approxi-
matable by {Fy,}, where Sg is the space spanned by {Ry,}.

PRrOOF. It suffices to prove that T is convex or strictly convex, lower semi-continuous,
and proper. Then, the results follow by Theorem 2.1.

T is proper because ¢; is proper. Next is to prove convexity and lower semi-
continuity of T'. Because ¢; is lower semi-continuous, there exists a § depending on
F such that ¢;[F(x;)] < ¢i(s) +¢/n for |s — F(x;)| < d, every € > 0, and any F € S.
Thus, for ||[F* — F||ly < d/M and M = maxi<i<n ||Ra,||v,

T(F) <T(F*)+e,
because

[F™ (i) — F(:)]
= |< F* = F, Ry, >v]|
< [|F* = Fliv[ R llv
< 0,

and hence ¢;[F(z;)] < ¢i[F*(z;)] + €¢/n. Therefore, T' is lower semi-continuous on S.
Finally, because ¢; is convex and hence for Fy, Fs € S and 0 < o < 1,

T [OzFl + (]_ — OZ)FQ]

= Z¢Z [< aFy + (1 — a)FQ,Rmi >V]
i=1

< Y [adi (< Fi, Rey >v) + (1= )¢ (< F, Ry, >v)]
i=1
= o (F1) + (1 — )T (F2),

T is convex.
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Strict convexity of T given the conditions in (b) can be proved as follows. For
L, Fb eSS 75 Fr,and 0 < a < 1, T[OéFl + (1 — Oé)FQ] < OlT(Fl) + (1 — a)T(FQ)
because < Iy, Ry, >v#< Iy, Ry; >y for some j and then by strict convexity of ¢,

¢; [< aF1 + (1 — a)Fy, Ry, >v]
< OZQZSJ‘ (< Fl,ij >V) + (1 — a)d)j (< FQ,ij >v) .

Therefore, T is strictly convex on S.

¢

Remark 2.2. IfT(F) = Y./, ¢i (< F,v; >v), the same conditions imposed on
S and ¢; in Corollary 2.3 hold, Sg is equal to the space spanned by {v;}, and V,
not necessarily being a reproducing kernel Hilbert space, is a separable Hilbert space,
the results in the corollary still hold, where v; € V. Thus, even as F is a measurable
function with respect to some measure, for example, F' being a square-integrable function
with respect to the Lebesgue measure, the results concerning the existence ofﬁ’ and the
approzimatability of T(F) or F may still hold.

3. Consistency and Weak Convergence of Nonlinear Estimators

Let By = (Buts-- - Bnm)t and B = (B1,...,Bm)!, where f,; are real-valued ran-
dom variables. Let G, = Z;”Zl Bnﬂl)j = BfZ@ZJ be the estimator of the operator G =
Z;-”zl Biv; = B, where ¢ = [ihq, ..., ]t and 1 are elements in some normed space
W. The consistency and the asymptotic normality of the estimated coefficients Bn
are key conditions for the convergence in probability and in distribution of the esti-
mator. Denote the notations —2» and —% as the convergence in probability and in
distribution, respectively. If the consistency of the estimated coefficients Bn holds, the
estimator based on the finite dimensional approximation is a consistent estimator of its
counterpart, as indicated by the following theorem and corollary.

Theorem 3.1. If 3,1 AN B, then Gn 25 G.
n—0o0 n—o0

Proo¥r. The measurability of Gy, is proved first. Define the function h: R™ — W
by h(z) = >0, xjv;, where = (v1,. .. ,Tm)t. h is continuous because
_ < . _
1) = by < m (s sl ) Lo = ol 3 0

as ||zn, — z||pm — 0. Therefore, h(f3,) = G, is Borel measurable and thus a W-valued

random variable. The result follows since

G.(w) = 6w, < m (o sl ) || Bue) = |,

1<j<m
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where w is any sample point.

&

As W =V, a direct result based on the above theorem is the following corollary.
Let (p = [<p17 et (pm]t'

Corollary 3.1. If Bn L5 B, then BA,tlgo NN Bp.
n—oo n—0o0

The sufficient conditions for weak convergence of probability measures on the space
of continuous functions defined on the unit interval [0, 1] endowed with the uniform
topology have been established (Billingsley, 1999, Theorem 7.1 and Theorem 7.5). Ba-
sically, the tightness of the sequence of probability measures and weak convergence of
the finite dimensional distributions are two main conditions. The results have been
generalized to the space of continuous operators endowed with the uniform topology,
denoted by C(K,Y), from a compact subset K of a separable Banach space X to a
separable Banach space Y in Wei (2016). The result is given below. Let

W(F, A) = sup|g, —zo|x<all F(z1) — F(z2)|ly,
for F e C(K,Y).

Theorem 3.2. Let {F,} and F be C(K,Y )-valued random variables. If
lim limsup P [w(Fy, A) > €] =0,

A—=0 pooco
and the sequence {[Fp(21),...,Fn(zr)]} converges in distribution to [F(x1),...,F(xy)]
for all xzq,...,x in K, i.e., the finite dimensional convergence of {F,} in distribution
to F in K, then {F,} converges in distribution to F.

The above theorem can be used for proving weak convergence of the operator-valued
estimators in nonparametric regression, as indicated by the following theorem. Let an
be a C(KV, R)-valued random variable, i.e., the assumption imposed on an being re-
laxed. {f3,(%)} is asymptotically normal on K if there exists a sequence of m x m ma-
trices {¢,} with C(K", R)-valued elements satisfying {3 (z) = [6*,(&), ..., 5%,,(Z)]' =
cn(2)(Bn(E) — B)} converges in distribution to a multivariate normal variable with zero
mean vector and identity variance-covariance matrix for every & € KV. For a B-valued
Radon Gaussian variable g, let

S(9) = swp  A{B{[T(9))’}}"/?,
[IT||p*<1,T€B*
where B* is the topological dual space of the Banach space B. Assume that 0 € KNt
the range of the norm function on KV *1is [0,1], and 0 < ||z||yn+1 < 1 for z € KN+
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Theorem 3.3. Let ¢; defined on K, j =1,...,m, satisfy the Lipschitz condition,
i.e., there exists a constant Ly such that ||@;(Z) — ¢;(2*)|ly < L1]|Z —&¥||x for &,2* €
K. Assume that there exist an ng, positive constants Lo, 6 such that

P

for n > ng, and the number of points in a A-net for KN+ v, satisfies

B:L](:Z.) _BZ](:%*) < LQH'%_:Z‘*HXNv'iai‘* € KN) = 17] = 17"'7m7

v < h(ATHATE

where A < 8, h is an increasing function, and h(n) = olexp(an?)],Ya > 0. If {3,(%)}
is asymptotically normal on KV, then

Fo = len(Bn— B)'e 5 F,

n—o0

where F = Z;n:l zjpj is a centered Radon Gaussian variable with

. 1/2
2
Y(F) = SUP||T || cx (x,yy<1,TEC*(KY) Z [T ()] ;
j=1
and where z1, ..., zym are independent standard normal random variables.
PRrOOF. First, {[F,(z1),...,Fn(zk)]} converges in distribution to

D zipi(E0), -0 Y 205 (E)]
s =1

by the asymptotical normality of {/3,(Z)} and the mapping theorem (Billingsley, 1999,
Theorem 2.7), where z; = (%;, %), 7 2j;(Z:) is a Y-valued centered Radon Gaus-
sian variable with

. . 1/2
S 1Y i@ = sup o {Tle@)}
j=1 1Ty <1,T€Y™ j=1
for any x1,...,x, in KN*1. Thus, the finite dimensional convergence of {Fn} in dis-

tribution to F in KN¥*! given in Theorem 3.2 holds.
Secondly, to prove that the equation in Theorem 3.2 holds, the following inequality
is proved first,

Plo(Fu,A) = a] <Y P | sup [|Fuls) = Falan)ly = 5|
i=1 SEB(C&;,2A)
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for given €1 > 0, where 0 < ||z1|[xnv+1 < oo < lay||xnv+r < 1, {a; : i =1,...,0} is
a finite A-net for KN+ and B(z;,2A) is the closed ball with the center x; and the
radius 2A. As ||s — x||x~+1 < A, s and z fall in B(x;,2A) because there exists a z;
such that ||z — z;||x~+1 < A and hence

Is — @il xaer < [s — 2llxmver + [lo — @il x v <24
Then,
1F(s) = F(a)lly <[[F(s) = F(zi)lly +[[F(z:) — F(z)ly
and hence

w(F,A)<2max  sup [[F(s) — F(zi)y.
l<igw sEB(x,24)

The objective inequality is obtained by

Plw(F,, A) > €]

< P|max sup || Fn(s) — Folzi)lly > a

IS0 e B(a, 20) 2

=1

—_

SEB($i72A)

sup | Fu(s) = Fulwi)ly = 2] .

By the Lipschitz condition imposed on ¢;, the condition

5 (F) — B (5)| < Lol|F — &*||xn, 5,5 € KN) —1

and the condition for the number of points in the net for KV*1, there exist an nj and
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a A such that for n > ng,

IN

IN

IA

IN

IN

Plw(Fn,A) > €]

Sp
i=1

uﬂ@—ﬂmm>“]

sup >
s€B(z4,24) 2
v m [ R ) ] A ~ ] .
P sup B (3)0(3) — B (2:) i () >4
; {; _SEB(xi,QA)‘ ! ! J J ‘y 2
v m . i ] ] .
i=1 j=1 [s€B(z:,24)
- . Q% (= Ak [~ o €
+> P Z[ sup ‘Bn.(s)—ﬁnj(xi) ||<pj(s)||Y] > Zl
i=1 j=1 [s€B(z:,24)
v m . . 61
=1 j=1
v m i . ) 61
+ZP Z _Sllp ﬁn](s)_ nj(l'z) > r
i=1 j=1 s€B(x;,2A)

— 1)mLih(A7Y) exp ( —e? ) N
X ves
128m2 L2 A2

for given positive numbers €; and ez, where M = maxi<j<m SUpzcx ¢;(Z), €3 associated

with e depends on 7, z(, ) is the maximum of |z1], - .. |2zm|, the equality is due to
P Bri(®) = Bry@)| < a7 ¢ =1
sup i (8 g (Ti (=

j=1 s€B(z;,2A)

as A < €1/(8mM Lg), and the fifth and the sixth inequalities are due to the mapping
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theorem and the following result,

€1
Pl >
<z<m> = 8mL1A>

I
—
|
g
/N
R\
A
oo
Sk
>
N————
3

A
[\
~
E
|
=
~
N
Q
|
[070]
3
&2
>
N————

IN

27/2(2m — 1)mL1 A —e?
p .
wl/2¢ 128m2 L3 A2

Note that the last inequality given in the above holds by employing the inequality for
the tail of the standard normal distribution (Billingsley, 1999, M25). Finally, the result
follows by Theorem 3.2.

¢

Remark 3.1. Although the space C(KN1LY) might not be reflexive, it might be
the subset of some reflexive Banach spaces endowed with another norm. For example,
C([0,1], R) is the subset of the Hilbert space Lo([0,1]) endowed with the inner product
< F1, Fy >1,01)= f[(),l] F1(z)Fy(x)dx and the norm induced by the inner product, i.e.,
the space of square-integrable functions on [0, 1] with respect to the Lebesgue measure,
where Fy, Fy are any elements in the Hilbert space. Therefore, if the space C(KNT1Y)
1s the subset of some reflexive Banach space and the Schauder basis falls in the space
C(KN*LY), the operator E, corresponding to the subset S of the reflexive Banach
space falls in C(KNTLY). In addition, the estimator of F,, based on the estimated
coefficients is a C(KN*1,Y)-valued random variable. Therefore, in such case, Theorem
2.1 states that the minimizer in the reflexive Banach space or the associated objective
functional defined on the space is approximatable by the ones in the non-reflerive space
C(KNH,Y). On the other hand, the only requirement imposed on @; in Theorem 3.3
is the Lipschitz condition. That is, the result holds for any finite number of functions
@; satisfying the Lipschitz condition. Therefore, as V is not a reflexive Banach space
and Theorem 2.1 might not be true, Theorem 3.3 may still be true.
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4. Statistical Applications
4.1 Nonparametric Regression Models

Let
y=F(z)+e,

where F' is usually a real-valued function on some subset Q of RY, for example, the
compact subset of RY, x € R? is the regressor, and both y and ¢ are real-valued random
variables.

For the above models, F' can be assumed to be a real-valued function falling in V' =
L,(2) with some sensible measures (Adams & Fournier, 2003, Chapter 2; Aliprantis
& Border, 2006, Chapter 13), 1 < p < oo, i.e., |F|P being integrable and V being
a separable and reflexive Banach space. For instance, if F' is assumed to be square-
integrable with respect to the Lebesgue measure on R? and the integrated square error,
ie., [olF(z) — Fy(2))?de = ||F — F0||%2(Q), is employed, the existence of the unique
minimizer and its approximatability can be proved by Corollary 2.1 (b), where Fj is
some specific function of interest, for example, the true function. Further, if the function
¢ =ht, ht(t) =t?/2as0 <t < M, and h*(t) = Mt — M?/2 ast > M, M > 0,
i.e., h™ being the restriction of the Huber’s function h (see Bauschke & Combettes,
2011, Example 8.35) to R™, is employed, the existence of the robust minimizer of the
objective function h* (|| F — Fyl| Lo()) and the approximatability of the robust objective
function can be proved by Corollary 2.1 (a). If the objective function is the residual
s
to fall in a separable reproducing kernel Hilbert space V with a reproducing kernel
R(-,-), and S is bounded, for example, S = {F : ||F||y < r} being a ball, r > 0,
or S consisting of positive functions falling in the ball, theoretical results concerning

sum of squares » in multivariate nonparametric regression models, F' is assumed

the existence of the minimizer and the approximatability of the objective function
can be proved by Corollary 2.3 (a), where (x;,y;) are the observations and e; = y; —
F(z;). In addition, the existence of the robust minimizer and the approximatability
of the objective function based on ¢;[F(x;)] = h(e;), i.e., the objective function being
>i 1 h(e;), can be also proved by Corollary 2.3 (a). In some cases, the assumptions
imposed on S can be relaxed. For some examples, if S is any set of which orthogonal
projection on V5 is a nonempty bounded closed convex set and the objective function is
equal to Y 7" | 622+C||PV11_ (F)||? (Wahba, 1990, Chapter 1) or >, h(e:)+cl| Py (B)%,
i.e., the addition of the penalty term CHP‘/lj_ (F)||?#, theoretical results concerning the
existence of the nonrobust and robust minimizers, both linear combinations of a finite
number of basis functions, can be proved by using Lemma 2.1, where V5 is the space
spanned by {R(,x;),i = 1,...,n} and the basis functions in V3, ¢ > 0, V;- is the
orthogonal complement of any finite-dimensional subspace Vi of V, and PvlL is the
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projection operator of V' onto Vﬁ. One example of the above set S is the set {F : F' =
Fi+ 5 Fy € So,F € S2L}, where S5 is any nonempty bounded closed convex subset
of Vo, S is any subset of Vi-, and where Vi is the orthogonal complement of V5.
Furthermore, as the resulting estimator is a linear combination of a finite number of
continuous basis functions defined on some compact subset of R?, both the consistency
and weak convergence of the resulting estimator in the nonparametric regression models
can be proved by Corollary 3.1 and Theorem 3.3.

4.2 Measurement Error in Nonparametric Regression Models

Let
y=F(z)+e

where x is a R?-valued random vector and ¢ is a real-valued random variable.

For the above models, assume that X is the space consisting of random vectors
with means and Y is the space consisting of random variables with finite variances,
i.e., X being a separable Banach spaces and Y being a separable Hilbert space with
the inner product < yi,y2 >y= E(y1y2) for y1,y2 € Y. Further, assume that e
has a finite variance. If the inner product for the separable Hilbert space V is <
Fi,Fy >y= ", < Fi(z;), Fa(x;) >y and the objective functions are the expected
value of the error sum of squares E(> 1 €?) = ||[F — Fo|[} and R (||F — Follv),
the existence of the unique nonrobust minimizer and the robust minimizer(s) and the
associated approximatability can be proved by Corollary 2.1 (b) and Corollary 2.1
(a), respectively, where z; € X, y; € Y, ¢ = y; — F(x;), and Fy(x;) = y;. Further,
if the penalized objective function E(} " €7) + c||PV1L (F — Fy)||? is employed and
S —Fy = {F — Fy : F € S}, the shift of the set S, is a set of which orthogonal
projection on Vi is a nonempty bounded closed convex set, that the existence of the
minimizer, a linear combination of a finite number of basis functions, can be proved
by using Lemma 2.1, were V; is any finite dimensional subspace of V. One example
of Sis the set {F : F = Fy+ Fy + F5,Fy, € S1,F; € Sf}, where S is any nonempty
bounded closed convex subset of V; and Si- is any subset of Vi-. In addition, both the
consistency and weak convergence of the resulting estimator based on finite dimensional
approximation in the Polish space consisting of continuous nonlinear operators on the
compact subset of X (Aliprantis & Border, 2006, Chapter 3.19; Remark 3.1), i.e., a
linear combination of a finite number of basis functions in the space, can be proved by
Corollary 3.1 and Theorem 3.3.

Note that the other model to fit the data with the random regressor is

y=F[E(z)] +e.

For the model, theoretical results can be proved analogous to the ones in Section 4.1.
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4.3 Functional Data Analysis

Let
yj(x) = Fj(z) + €z, =1,...,m

(Ramsay & Silverman, 2005), where € R, Fj(x) are real-valued functions, and e
are real-valued random variables.

The above model can be considered as the nonparametric regression models with
m functions (curves). Fj can be assumed to be real-valued functions falling in a sepa-
rable and reflexive Banach space V. Then, theoretical results analogous to the ones in
Section 4.1 concerning the existence, the approximatability, the consistency, and weak
convergence for the minimizers of interest and the associated objective functions can
be proved based on the ones in Section 2 and Section 3.

4.4 Nonparametric Regression Models Using Differential Equations

Ordinary differential equations have been used for the fitting of the functional data
(Ramsay & Silverman, 2005, Chapter 18 and Chapter 19). It might be also sensible to
consider the general differential equations for data fitting, i.e., the partial differential
equations (PDE). A dth order PDE is

OF (z) ol F(x) 0lF(x)
D |z, F(x), A — =0,

(z) o1 ijll . 856er 8xg
where z = (z1,...,24)" € RY, a = (a,..., ), || = Yj_;ax < d,a) are non-
negative integers, {ji,...,j.} C {1,...,q}, F is a real-valued function, and D is a
function defined on some subset of R®. For example, a second order PDE with ¢=2
and s=8 is

F F ’F 2F ’F 2F

D :z,F(x),a (x)’a (1:)78 (296)78 (x)’a (x)j@ (253) _o.
856‘1 8952 8561 85616%2 8$23I1 8x2

The weak solutions of several well-known PDEs subject to prescribed boundary and ini-
tial conditions fall in the Hilbert space, including the ones of second order elliptic PDEs,
second order parabolic PDEs, second order hyperbolic PDEs, and Euler-Lagrange equa-
tion (Evans, 1998). Further, the weak solutions for the second order elliptic PDEs, the
second order parabolic PDEs and the second order hyperbolic PDEs can be imbedded
into the space of smooth functions, i.e., the subspace of some separable Hilbert space,
while the weak solutions for the Euler-Lagrange equation can fall in a separable Hilbert
space by imposing a few strong assumptions (Evans, 1998, Chapter 8.3). Therefore,
it is sensible to assume that the solution F', possibly not unique, exists and falls in a
separable Hilbert space.
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Suppose that the model for the response vy is
y=F(z)+e

where € is a real-valued random variable. If the total sum of squares given in Theorem
2.1 of Wei (2014) excluding the penalty term, i.e., the sum of those mean sum of squares
corresponding to the responses, the differential equation, the initial conditions, and the
boundary conditions, is employed and S is any set of which orthogonal projection on
V1 is a nonempty bounded closed convex set, i.e., the assumptions on S being relaxed,
the existence of the minimizer and the approximatability of the objective function can
be proved by using Theorem 2.1, where V7 is the space spanned by the representers.
For example, S can be the set {F : F = Fy + F5,F} € S1,F; € Sf}, where S
is any nonempty bounded closed convex subset of V; and Sf is any subset of Vll. In
addition, if the resulting estimated solution is a linear combination of a finite number of
continuous basis functions defined on some compact subset of R?, both the consistency
and weak convergence of the resulting estimator can be proved by Corollary 3.1 and
Theorem 3.3.
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