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ABSTRACT

For the function from a real separable Banach space into a real separable Banach
space, i.e., a possibly nonlinear operator, in nonparametric regression, theoretical re-
sults are established for the estimator based on finite dimensional approximation. A
new concept “approximatability” is presented and the operators of interest are proved
to be approximatable under different situations. The results concerning both consis-
tency and weak convergence of the estimator are obtained. Statistical applications of
these theoretical results are given.
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1. Introduction

Consider the following nonparametric regression model,

y = F (x) + ϵ,

where F is usually a real-valued function on Rq, x ∈ Rq, and both y and ϵ are real-

valued random variables.

The above nonparametric regression model can be generalized by relaxing the as-

sumptions imposed on the domain and range of the function F . In this article, let F

defined on some subset of X be a Y -valued function and fall in a real separable Banach

space V with a known Schauder basis (Enflo, 1973; Kreyszig, 1978, p. 69; Morrison,

2001, Proposition 5.3) and both y and ϵ are Y -valued random variables, where both X

and Y are real separable Banach spaces. Relatively few theoretical results have been

done for the resulting estimators based on finite dimensional approximations in such

general setting. The goal of this article is to develop the theoretical results for the “gen-

eralized” nonparametric regression models. The unknown operator F =
∑∞

j=1 βjφj is

of interest, where {φj} is the Schauder basis and βj are the coefficients. To estimate

F , the coefficients βj need to be estimated based on the data available first. In prac-

tice, the finite dimensional approximations of F , i.e.,
∑m

j=1 βjφj , can be used as the

objective operator to be estimated. Thus, the methods, usually involving some numer-

ical algorithms, can be employed to estimate the finite number of coefficients. As the

resulting estimator
∑m

j=1 β̂njφj is an accurate estimator of
∑m

j=1 βjφj , for example,

the consistent estimator, it can be also an accurate estimator of F for large m due to∑∞
j=m+1 βjφj −→

m→∞
0, where β̂nj are real-valued random variables and n is a positive

integer, usually the number of data available. In next section, Theorem 2.1 and its

associated corollaries indicate that the estimated operator (the minimizer) of a convex

objective functional based on the finite dimensional approximations of V might con-

verge to the one based on the original infinite dimensional space in different situations.

In Section 3, the consistency of the estimator
∑m

j=1 β̂njφj is proved. Furthermore, some

sufficient conditions for the convergence of the sequence of estimators in distribution

to a centered Radon Gaussian variable (Ledoux & Talagrand, 1991, Chapter 3) are

established in this section. Finally, the theoretical results given in Section 2 and Sec-

tion 3 can be employed in a variety of statistical models, including the nonparametric

regression models with or without measurement errors and the models for fitting the

functional data with or without the use of a differential equation. These statistical

applications are presented in Section 4. Hereafter, all the normed spaces or the inner

product spaces of interest are over the real field and the notation || · ||W is denoted as

the norm of the normed space W . As W is a Hilbert space, the norm induced by the

inner product is || · ||W = (< ·, · >W )1/2.
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2. Finite Dimensional Approximation

The concept of finite dimensional approximation is described first.

Definition 2.1. Let S be a non-empty subset of a normed space U . u in S is

approximatable by a sequence {um : um ∈ Um ∩ S} if the sequence satisfies

um −→
m→∞

u,

where Um are finite dimensional subspaces of U . An operator T : S →W taking values

on a normed space W is approximatable at u by {um} if

T (um) −→
m→∞

T (u).

As S = V , any element u in S and any continuous operator T on S can be approx-

imatable by the sequence of which elements are linear combinations of the Schauder

basis vectors. However, the approximatability result might not be true if the set S is

not the space V or T is not continuous on S. It turns out that the convexity of the set

S and the functional T , i.e., W = R, plays a crucial role for the approximatability of

the statistical estimator .

A commonly used method to estimate true F is to find the minimizer(s) of some

objective functional, for example, the minimizer of the residual sum of squares. Let

S be a non-empty closed convex subset of V and T : S → R be convex, lower semi-

continuous, and proper, where V is assumed to be reflexive in this section. As S is

unbounded, T is assumed to be coercive. The existence of the minimizer(s) of a certain

objective functional on V is well established (Deimling, 1985, Theorem 25.1; Ekeland

& Témam, 1999, Proposition 1.2, p. 35). By Proposition 1.2 of Ekeland & Téman

(1999), the minimizer F̂ ∈ S of the objective functional T exists as indicated by the

following lemma.

Lemma 2.1. F̂ = argmin
F∈S

T (F ) exists. Furthermore, F̂ is unique if T is strictly

convex on S.

Based on the above lemma, the finite dimensional approximation of F̂ exists as

indicated by the following theorem.

Theorem 2.1. Let F̂ ∈ S◦, where S◦ is the interior of S. There exist subspaces

Vm of V spanned by the finite number of elements of the Schauder basis {φj} and a

sequence of minimizers {F̂m = argmin
F∈Vm∩S

T (F )} such that T is approximatable at F̂ by

{F̂m}. As T is strictly convex, the unique minimizer F̂ is approximatable by {F̂m}.
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Proof. Because F̂ ∈ S◦, for every ϵ1 = 1/m > 0, there exists an N1 depending

on m such that ||F̃m − F̂ ||V < ϵ1 as nm > N1, where F̃m =
∑nm

j=1 bjφj ∈ S. Note that

{nm : m = 1, 2, . . .} can be chosen to be a nondecreasing sequence. That is, F̃m −→
m→∞

F̂ .

Moreover, because T is continuous at F̂ by Corollary 2.5 (p. 13) of Ekeland & Témam

(1999), for every ϵ2 > 0, there exists an N2 such that |T (F̃m)−T (F̂ )| < ϵ2 for m > N2,

i.e., T (F̃m) −→
m→∞

T (F̂ ). Let Vm = span{φj , j = 1, . . . , nm}. Since Vm∩S is a nonempty

closed convex subset of V , F̂m = argmin
F∈Vm∩S

T (F ) exists by Proposition 1.2 of Ekeland &

Téman (1999). If F̂m = F̃m, then T (F̂m) = T (F̃m) −→
m→∞

T (F̂ ). On the other hand, if

F̂m ̸= F̃m, let T (F̂m)− T (F̃m) = ∆m < 0. Then,

0 ≤ T (F̂m)− T (F̂ ) = T (F̂m)− T (F̃m) + T (F̃m)− T (F̂ ) ≤ ∆m + ϵ2.

This implies |∆m| ≤ ϵ2 and hence |T (F̂m) − T (F̃m)| ≤ ϵ2. T (F̂m) −→
m→∞

T (F̂ ) then. As

T is strictly convex, F̂ and F̂m are both unique by the above proposition and hence

F̂m −→
m→∞

F̂ .

♢

The approximatability holds under different situations, including different choices

of V and the objective functional T , as indicated by the following corollaries. The

first corollary indicates that the above theorem holds for the objective functional T

depending on the difference of F and some usually pre-specified operator F0.

Corollary 2.1. Let V be a separable Hilbert space and ϕ : R+ → R be a nonde-

creasing, convex, lower semi-continuous, coercive, and proper function, where R+ =

{t : t ≥ 0, t ∈ R}.
(a) If T (F ) = ϕ(∥F − F0∥V ), then F̂ exists and T is approximatable at F̂ by {F̂m},
where F ∈ S and F0 ∈ V .

(b) If ϕ is strictly increasing and T (F ) = ϕ(||F − F0||pV ), 1 < p <∞, then F̂ is unique

and approximatable by {F̂m}.

Proof. Since V , the separable Hilbert space, is also a reflexive Banach space

with a Schauder basis, it suffices to prove that T is convex or strictly convex, lower

semi-continuous, coercive, and proper. Then, the conditions in Theorem 2.1 hold.

Because ϕ is coercive and proper, T is coercive and proper thus. Since the normed

function is a convex function, then for F1, F2 ∈ S and 0 ≤ α ≤ 1,

T [αF1 + (1− α)F2]

≤ ϕ [α∥F1 − F0∥V + (1− α)∥F2 − F0∥V ]
≤ αϕ(∥F1 − F0∥V ) + (1− α)ϕ(∥F2 − F0∥V )
= αT (F1) + (1− α)T (F2).
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Thus, T is convex. To prove lower semicontinuity of T , there exists a δ such that for

every ϵ > 0 and z ∈ R+, ϕ(z) < ϕ(z∗) + ϵ as |z∗ − z| < δ. Thus, for any F ∈ S and

||F ∗ − F ||V < δ, then

T (F )

= ϕ(∥F − F0∥V )
< ϕ(∥F ∗ − F0∥V ) + ϵ

= T (F ∗) + ϵ,

owing to

|∥F ∗ − F0∥V − ∥F − F0∥V | ≤ ∥F ∗ − F∥V .

Therefore, T is lower semicontinuous on S.

As ϕ is strictly increasing, by strict convexity of ||·||pV on S (Bauschke & Combettes,

2011, Example 8.21), 1 < p <∞,

T [αF1 + (1− α)F2]

< ϕ
[
α∥F1 − F0∥pV + (1− α)∥F2 − F0∥pV

]
≤ αT (F1) + (1− α)T (F2),

for F1, F2 ∈ S, F1 ̸= F2, and 0 < α < 1, i.e., T (F ) = ϕ(||F − F0||pV ) being strictly

convex.

♢

A Hilbert-Schmidt operator F : X → Y (Da Prato & Zabczyk, 1992, Appendix C)

is a bounded linear operator with the norm

∥F∥HS =

( ∞∑
i=1

∥F (ei)∥2Y

)1/2

,

where X and Y are both separable Hilbert spaces, {ei} is the orthonormal basis of

X, and ∥ · ∥Y is the norm induced by the inner product < ·, · >Y . The space consist-

ing of Hilbert-Schmidt operators is a separable Hilbert space with the inner product

< F1, F2 >HS=
∑∞

i=1 < F1(ei), F2(ei) >Y for F1, F2 in the space. The above corollary

can be applied to the Hilbert-Schmidt operator involving random vectors.

Corollary 2.2. Let ϕ : R+ → R be a nondecreasing, convex, lower semi-continuous,

coercive, and proper function and V be the inner product space of Hilbert-Schmidt

operators from X to Y with the norm || · ||HS, where X is the separable Hilbert space
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and Y is the spaces of k-dimensional real random vectors of which elements are square-

integrable, i.e., having the second moments, and ||y||Y = [
∑k

i=1E(y2i )]
1/2 for y =

(y1, . . . , yk)
t ∈ Y . Let

S = {F : E [F (x)] = E [F0(x)] , F, F0 ∈ V, x ∈ X} .

(a) If T (F ) = ϕ(∥F − F0∥HS), then F̂ exists and T is approximatable at F̂ by {F̂m}.
(b) If ϕ is strictly increasing and T (F ) = ϕ(||F −F0||pHS), 1 < p <∞, F̂ is unique and

approximatable by {F̂m}.

Proof. S is convex because for F1, F2 ∈ S, x ∈ X, and 0 ≤ α ≤ 1,

E [αF1(x) + (1− α)F2(x)] = E [F0(x)] ,

and hence αF1 + (1 − α)F2 ∈ S. Next is to prove that S is closed. Let Fn −→
n→∞

F ,

i.e., ||Fn − F ||HS −→
n→∞

0, where Fn ∈ S and F ∈ V . Because ||Fn − F || ≤ ||Fn − F ||HS

by Corollary 16.9 of Meise & Vogt (1997), ||Fn(x) − F (x)||Y −→
n→∞

0, where || · || is the

usual operator norm for the bounded linear operator. This gives that E[Fn(x)] =

E[F0(x)] −→
n→∞

E[F (x)] and hence E[F (x)] = E[F0(x)]. Hence, F ∈ S and S is closed.

The results follow by Corollary 2.1.

♢

Remark 2.1. In linear regression, it is well known that the least squares estimate

is also a BLUE (best linear unbiased estimate, Seber, 1977, Theorem 3.2). In fact, the

existence of the BLUE is a special case of the above corollary. Let χ = (χ1, . . . , χp)
t

be a p-dimensional random vector with E(χ) = θ and the variance-covariance matrix

equal to σ2I, where θ ∈ Rp and I is the identity matrix. Let the one-dimensional Hilbert

space X = {aχ : a ∈ R} with the inner product < a1χ, a2χ >X= a1a2
∑p

i=1E(χ2
i ) and

the orthonormal basis e = χ/||χ||X , where a1, a2 ∈ R and || · ||X is the norm induced

by the inner product. Consider the bounded linear operators F : X → Y defined by

F (χ) = ltχ and F0 : X → Y defined by F0(χ) = ctE(χ) = ctθ, l, c ∈ Rp, where Y is the

(p+1)-dimensional Hilbert space of real-valued random variables spanned by {χi}∪ {1}
with the inner product < y1, y2 >Y = E(y1y2) for y1, y2 ∈ Y and the induced norm

|| · ||Y . Note that both F and F0 are Hilbert-Schmidt operators because ||F (e)||Y < ∞
and ||F0(e)||Y < ∞. Further, the space V is a (p+1)-dimensional Hilbert space and

hence a separable and reflexive Banach space. For any given c, the set S given in the

above corollary consists of the ”unbiased” operators with expected values equal to ctθ

at χ, i.e., S = {F : E[F (χ)] = ctθ = E[F0(χ)]}. T (F ) = ϕ(||F − F0||2HS) = V ar(ltχ)

is strictly convex and hence there exists a unique minimizer, i.e., the BLUE with the

minimum variance, where ϕ : R+ → R is given by ϕ(s) = ||χ||2Xs, s ∈ R+.
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Reproducing kernel Hilbert space (Aronszajn, 1950) has been extensively used in

nonparametric regression (Berlinet & Thomas-Agnan, 2004, Chapter 3). As the space

V is a separable reproducing kernel Hilbert space, the following corollary can be applied

to some optimization problems in nonparametric regression.

Corollary 2.3. Let S be bounded and V be a separable reproducing kernel Hilbert

space of real-valued functions defined on the subset of the separable Banach space X with

a reproducing kernel R(·, ·) and an inner product < ·, · >V . Let ϕi : R → R be convex,

lower semi-continuous, and proper. Let T (F ) =
∑n

i=1 ϕi [F (xi)], where Rxi = R(·, xi)
are not all equal to the zero element in V .

(a) F̂ exists and T is approximatable at F̂ by {F̂m}.
(b) If S is the subset of SR and ϕi are strictly convex, then F̂ is unique and approxi-

matable by {F̂m}, where SR is the space spanned by {Rxi}.

Proof. It suffices to prove that T is convex or strictly convex, lower semi-continuous,

and proper. Then, the results follow by Theorem 2.1.

T is proper because ϕi is proper. Next is to prove convexity and lower semi-

continuity of T . Because ϕi is lower semi-continuous, there exists a δ depending on

F such that ϕi[F (xi)] < ϕi(s) + ϵ/n for |s − F (xi)| < δ, every ϵ > 0, and any F ∈ S.

Thus, for ||F ∗ − F ||V < δ/M and M = max1≤i≤n ||Rxi ||V ,

T (F ) < T (F ∗) + ϵ,

because

|F ∗(xi)− F (xi)|
= |< F ∗ − F,Rxi >V |
≤ ∥F ∗ − F∥V ∥Rxi∥V
< δ,

and hence ϕi[F (xi)] < ϕi[F
∗(xi)] + ϵ/n. Therefore, T is lower semi-continuous on S.

Finally, because ϕi is convex and hence for F1, F2 ∈ S and 0 ≤ α ≤ 1,

T [αF1 + (1− α)F2]

=
n∑

i=1

ϕi [< αF1 + (1− α)F2, Rxi >V ]

≤
n∑

i=1

[αϕi (< F1, Rxi >V ) + (1− α)ϕi (< F2, Rxi >V )]

= αT (F1) + (1− α)T (F2),

T is convex.
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Strict convexity of T given the conditions in (b) can be proved as follows. For

F1, F2 ∈ S, F1 ̸= F2, and 0 < α < 1, T [αF1 + (1 − α)F2] < αT (F1) + (1 − α)T (F2)

because < F1, Rxj >V ̸=< F2, Rxj >V for some j and then by strict convexity of ϕj ,

ϕj
[
< αF1 + (1− α)F2, Rxj >V

]
< αϕj

(
< F1, Rxj >V

)
+ (1− α)ϕj

(
< F2, Rxj >V

)
.

Therefore, T is strictly convex on S.

♢

Remark 2.2. If T (F ) =
∑n

i=1 ϕi (< F, vi >V ), the same conditions imposed on

S and ϕi in Corollary 2.3 hold, SR is equal to the space spanned by {vi}, and V ,

not necessarily being a reproducing kernel Hilbert space, is a separable Hilbert space,

the results in the corollary still hold, where vi ∈ V . Thus, even as F is a measurable

function with respect to some measure, for example, F being a square-integrable function

with respect to the Lebesgue measure, the results concerning the existence of F̂ and the

approximatability of T (F̂ ) or F̂ may still hold.

3. Consistency and Weak Convergence of Nonlinear Estimators

Let β̂n = (β̂n1, . . . , β̂nm)t and β = (β1, . . . , βm)t, where β̂nj are real-valued ran-

dom variables. Let Ĝn =
∑m

j=1 β̂njψj = β̂tnψ be the estimator of the operator G =∑m
j=1 βjψj = βtψ, where ψ = [ψ1, . . . , ψm]t and ψj are elements in some normed space

W . The consistency and the asymptotic normality of the estimated coefficients β̂n
are key conditions for the convergence in probability and in distribution of the esti-

mator. Denote the notations
p−→ and

d−→ as the convergence in probability and in

distribution, respectively. If the consistency of the estimated coefficients β̂n holds, the

estimator based on the finite dimensional approximation is a consistent estimator of its

counterpart, as indicated by the following theorem and corollary.

Theorem 3.1. If β̂n
p−→

n→∞
β, then Ĝn

p−→
n→∞

G.

Proof. The measurability of Ĝn is proved first. Define the function h : Rm → W

by h(x) =
∑m

j=1 xjψj , where x = (x1, . . . , xm)t. h is continuous because

∥h(xn)− h(x)∥W ≤ m

(
max

1≤j≤m
∥ψj∥W

)
∥xn − x∥Rm −→

n→∞
0

as ∥xn−x∥Rm −→
n→∞

0. Therefore, h(β̂n) = Ĝn is Borel measurable and thus a W -valued

random variable. The result follows since∣∣∣∣∣∣Ĝn(w)− G(w)
∣∣∣∣∣∣
W

≤ m

(
max

1≤j≤m
∥ψj∥W

) ∣∣∣∣∣∣β̂n(w)− β
∣∣∣∣∣∣
Rm

,
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where w is any sample point.

♢

As W = V , a direct result based on the above theorem is the following corollary.

Let φ = [φ1, . . . , φm]t.

Corollary 3.1. If β̂n
p−→

n→∞
β, then β̂tnφ

p−→
n→∞

βtφ.

The sufficient conditions for weak convergence of probability measures on the space

of continuous functions defined on the unit interval [0, 1] endowed with the uniform

topology have been established (Billingsley, 1999, Theorem 7.1 and Theorem 7.5). Ba-

sically, the tightness of the sequence of probability measures and weak convergence of

the finite dimensional distributions are two main conditions. The results have been

generalized to the space of continuous operators endowed with the uniform topology,

denoted by C(K,Y ), from a compact subset K of a separable Banach space X to a

separable Banach space Y in Wei (2016). The result is given below. Let

w(F,∆) = sup∥x1−x2∥X≤∆∥F (x1)− F (x2)∥Y ,

for F ∈ C(K,Y ).

Theorem 3.2. Let {Fn} and F be C(K,Y )-valued random variables. If

lim
∆→0

lim sup
n→∞

P [w(Fn,∆) ≥ ϵ] = 0,

and the sequence {[Fn(x1), . . . ,Fn(xk)]} converges in distribution to [F(x1), . . . ,F(xk)]

for all x1, . . . , xk in K, i.e., the finite dimensional convergence of {Fn} in distribution

to F in K, then {Fn} converges in distribution to F .

The above theorem can be used for proving weak convergence of the operator-valued

estimators in nonparametric regression, as indicated by the following theorem. Let β̂nj
be a C(KN , R)-valued random variable, i.e., the assumption imposed on β̂nj being re-

laxed. {β̂n(x̃)} is asymptotically normal on KN if there exists a sequence of m×m ma-

trices {cn} with C(KN , R)-valued elements satisfying {β̂∗n(x̃) = [β̂∗n1(x̃), . . . , β̂
∗
nm(x̃)]t =

cn(x̃)(β̂n(x̃)−β)} converges in distribution to a multivariate normal variable with zero

mean vector and identity variance-covariance matrix for every x̃ ∈ KN . For a B-valued

Radon Gaussian variable g, let

Σ(g) = sup
||T ||B∗≤1,T∈B∗

{E{[T (g)]2}}1/2,

where B∗ is the topological dual space of the Banach space B. Assume that 0 ∈ KN+1,

the range of the norm function on KN+1 is [0, 1], and 0 ≤ ||x||XN+1 ≤ 1 for x ∈ KN+1.
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Theorem 3.3. Let φj defined on K, j = 1, . . . ,m, satisfy the Lipschitz condition,

i.e., there exists a constant L1 such that ||φj(x̆)−φj(x̆
∗)||Y ≤ L1||x̆− x̆∗||X for x̆, x̆∗ ∈

K. Assume that there exist an n∗0, positive constants L2, δ such that

P
(∣∣∣β̂∗nj(x̃)− β̂∗nj(x̃

∗)
∣∣∣ ≤ L2∥x̃− x̃∗∥XN , x̃, x̃∗ ∈ KN

)
= 1, j = 1, . . . ,m,

for n ≥ n∗0, and the number of points in a ∆-net for KN+1, v, satisfies

v ≤ h(∆−1)∆−1,

where ∆ < δ, h is an increasing function, and h(n) = o[exp(an2)], ∀a > 0. If {β̂n(x̃)}
is asymptotically normal on KN , then

Fn = [cn(β̂n − β)]tφ
d−→

n→∞
F ,

where F =
∑m

j=1 zjφj is a centered Radon Gaussian variable with

Σ(F) = sup∥T∥C∗(K,Y )≤1,T∈C∗(K,Y )


m∑
j=1

[T (φj)]
2


1/2

,

and where z1, . . . , zm are independent standard normal random variables.

Proof. First, {[Fn(x1), . . . ,Fn(xk)]} converges in distribution to

[
m∑
j=1

zjφj(x̆1), . . . ,
m∑
j=1

zjφj(x̆k)]

by the asymptotical normality of {β̂n(x̃)} and the mapping theorem (Billingsley, 1999,

Theorem 2.7), where xi = (x̃i, x̆i),
∑m

j=1 zjφj(x̆i) is a Y -valued centered Radon Gaus-

sian variable with

Σ

 m∑
j=1

zjφj(x̆i)

 = sup
∥T∥Y ∗≤1,T∈Y ∗


m∑
j=1

{T [φj(x̆i)]}2


1/2

,

for any x1, . . . , xk in KN+1. Thus, the finite dimensional convergence of {Fn} in dis-

tribution to F in KN+1 given in Theorem 3.2 holds.

Secondly, to prove that the equation in Theorem 3.2 holds, the following inequality

is proved first,

P [w(Fn,∆) ≥ ϵ1] ≤
v∑

i=1

P

[
sup

s∈B̄(xi,2∆)

∥Fn(s)−Fn(xi)∥Y ≥ ϵ1
2

]
,
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for given ϵ1 > 0, where 0 ≤ ||x1||XN+1 ≤ · · · ≤ ||xv||XN+1 ≤ 1, {xi : i = 1, . . . , v} is

a finite ∆-net for KN+1, and B̄(xi, 2∆) is the closed ball with the center xi and the

radius 2∆. As ||s − x||XN+1 ≤ ∆, s and x fall in B̄(xi, 2∆) because there exists a xi
such that ||x− xi||XN+1 < ∆ and hence

∥s− xi∥XN+1 ≤ ∥s− x∥XN+1 + ∥x− xi∥XN+1 < 2∆.

Then,

∥F (s)− F (x)∥Y ≤ ∥F (s)− F (xi)∥Y + ∥F (xi)− F (x)∥Y

and hence

w(F,∆) ≤ 2 max
1≤i≤v

sup
s∈B̄(xi,2∆)

∥F (s)− F (xi)∥Y .

The objective inequality is obtained by

P [w(Fn,∆) ≥ ϵ1]

≤ P

[
max
1≤i≤v

sup
s∈B̄(xi,2∆)

∥Fn(s)−Fn(xi)∥Y ≥ ϵ1
2

]

≤
v∑

i=1

P

[
sup

s∈B̄(xi,2∆)

∥Fn(s)−Fn(xi)∥Y ≥ ϵ1
2

]
.

By the Lipschitz condition imposed on φj , the condition

P
(∣∣∣β̂∗nj(x̃)− β̂∗nj(x̃

∗)
∣∣∣ ≤ L2∥x̃− x̃∗∥XN , x̃, x̃∗ ∈ KN

)
= 1

and the condition for the number of points in the net for KN+1, there exist an n∗0 and
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a ∆ such that for n ≥ n∗0,

P [w(Fn,∆) ≥ ϵ1]

≤
v∑

i=1

P

[
sup

s∈B̄(xi,2∆)

∥Fn(s)−Fn(xi)∥Y ≥ ϵ1
2

]

≤
v∑

i=1

P


m∑
j=1

[
sup

s∈B̄(xi,2∆)

∣∣∣∣∣∣β̂∗nj(s̃)φj(s̆)− β̂∗nj(x̃i)φj(x̆i)
∣∣∣∣∣∣
Y

]
≥ ϵ1

2


≤

v∑
i=1

P


m∑
j=1

[
sup

s∈B̄(xi,2∆)

∣∣∣β̂∗nj(x̃i)∣∣∣ ||φj(s̆)− φj(x̆i)||Y

]
≥ ϵ1

4


+

v∑
i=1

P


m∑
j=1

[
sup

s∈B̄(xi,2∆)

∣∣∣β̂∗nj(s̃)− β̂∗nj(x̃i)
∣∣∣ ||φj(s̆)||Y

]
≥ ϵ1

4


≤

v∑
i=1

P


m∑
j=1

∣∣∣β̂∗nj(x̃i)∣∣∣ ≥ ϵ1
8L1∆


+

v∑
i=1

P


m∑
j=1

sup
s∈B̄(xi,2∆)

∣∣∣β̂∗nj(s̃)− β̂∗nj(x̃i)
∣∣∣ ≥ ϵ1

4M


=

v∑
i=1

P


m∑
j=1

∣∣∣β̂∗nj(x̃i)∣∣∣ ≥ ϵ1
8L1∆


≤ v

[
P

(
z∗(m) ≥

ϵ1
8mL1∆

)
+ ϵ3

]
≤ 27/2(2m − 1)mL1h(∆

−1)

π1/2ϵ1
exp

(
−ϵ21

128m2L2
1∆

2

)
+ vϵ3

≤ ϵ2,

for given positive numbers ϵ1 and ϵ2, whereM = max1≤j≤m supx̆∈K φj(x̆), ϵ3 associated

with ϵ2 depends on n, z∗(m) is the maximum of |z1|, . . . , |zm|, the equality is due to

P


m∑
j=1

sup
s∈B̄(xi,2∆)

∣∣∣β̂∗nj(s̃)− β̂∗nj(x̃i)
∣∣∣ < ϵ1

4M

 = 1

as ∆ < ϵ1/(8mML2), and the fifth and the sixth inequalities are due to the mapping
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theorem and the following result,

P

(
z∗(m) ≥

ϵ1
8mL1∆

)
= 1−

[
P

(
|zj | <

ϵ1
8mL1∆

)]m
=

m∑
j=1

(−1)j+12j
(
m

j

)[
P

(
zj ≥

ϵ1
8mL1∆

)]j
≤ 2(2m − 1)P

(
zj ≥

ϵ1
8mL1∆

)
≤ 27/2(2m − 1)mL1∆

π1/2ϵ1
exp

(
−ϵ21

128m2L2
1∆

2

)
.

Note that the last inequality given in the above holds by employing the inequality for

the tail of the standard normal distribution (Billingsley, 1999, M25). Finally, the result

follows by Theorem 3.2.

♢

Remark 3.1. Although the space C(KN+1, Y ) might not be reflexive, it might be

the subset of some reflexive Banach spaces endowed with another norm. For example,

C([0, 1], R) is the subset of the Hilbert space L2([0, 1]) endowed with the inner product

< F1, F2 >L2([0,1])=
∫
[0,1] F1(x)F2(x)dx and the norm induced by the inner product, i.e.,

the space of square-integrable functions on [0, 1] with respect to the Lebesgue measure,

where F1, F2 are any elements in the Hilbert space. Therefore, if the space C(KN+1, Y )

is the subset of some reflexive Banach space and the Schauder basis falls in the space

C(KN+1, Y ), the operator F̂m corresponding to the subset S of the reflexive Banach

space falls in C(KN+1, Y ). In addition, the estimator of F̂m based on the estimated

coefficients is a C(KN+1, Y )-valued random variable. Therefore, in such case, Theorem

2.1 states that the minimizer in the reflexive Banach space or the associated objective

functional defined on the space is approximatable by the ones in the non-reflexive space

C(KN+1, Y ). On the other hand, the only requirement imposed on φj in Theorem 3.3

is the Lipschitz condition. That is, the result holds for any finite number of functions

φj satisfying the Lipschitz condition. Therefore, as V is not a reflexive Banach space

and Theorem 2.1 might not be true, Theorem 3.3 may still be true.
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4. Statistical Applications

4.1 Nonparametric Regression Models

Let

y = F (x) + ϵ,

where F is usually a real-valued function on some subset Ω of Rq, for example, the

compact subset of Rq, x ∈ Rq is the regressor, and both y and ϵ are real-valued random

variables.

For the above models, F can be assumed to be a real-valued function falling in V =

Lp(Ω) with some sensible measures (Adams & Fournier, 2003, Chapter 2; Aliprantis

& Border, 2006, Chapter 13), 1 < p < ∞, i.e., |F |p being integrable and V being

a separable and reflexive Banach space. For instance, if F is assumed to be square-

integrable with respect to the Lebesgue measure on Rq and the integrated square error,

i.e.,
∫
Ω[F (x) − F0(x)]

2dx = ||F − F0||2L2(Ω), is employed, the existence of the unique

minimizer and its approximatability can be proved by Corollary 2.1 (b), where F0 is

some specific function of interest, for example, the true function. Further, if the function

ϕ = h+, h+(t) = t2/2 as 0 ≤ t ≤ M , and h+(t) = Mt −M2/2 as t > M , M > 0,

i.e., h+ being the restriction of the Huber’s function h (see Bauschke & Combettes,

2011, Example 8.35) to R+, is employed, the existence of the robust minimizer of the

objective function h+(||F −F0||L2(Ω)) and the approximatability of the robust objective

function can be proved by Corollary 2.1 (a). If the objective function is the residual

sum of squares
∑n

i=1 e
2
i in multivariate nonparametric regression models, F is assumed

to fall in a separable reproducing kernel Hilbert space V with a reproducing kernel

R(·, ·), and S is bounded, for example, S = {F : ||F ||V ≤ r} being a ball, r > 0,

or S consisting of positive functions falling in the ball, theoretical results concerning

the existence of the minimizer and the approximatability of the objective function

can be proved by Corollary 2.3 (a), where (xi, yi) are the observations and ei = yi −
F (xi). In addition, the existence of the robust minimizer and the approximatability

of the objective function based on ϕi[F (xi)] = h(ei), i.e., the objective function being∑n
i=1 h(ei), can be also proved by Corollary 2.3 (a). In some cases, the assumptions

imposed on S can be relaxed. For some examples, if S is any set of which orthogonal

projection on V2 is a nonempty bounded closed convex set and the objective function is

equal to
∑n

i=1 e
2
i+c∥PV ⊥

1
(F )∥2V (Wahba, 1990, Chapter 1) or

∑n
i=1 h(ei)+c∥PV ⊥

1
(F )∥2V ,

i.e., the addition of the penalty term c∥PV ⊥
1
(F )∥2V , theoretical results concerning the

existence of the nonrobust and robust minimizers, both linear combinations of a finite

number of basis functions, can be proved by using Lemma 2.1, where V2 is the space

spanned by {R(, xi), i = 1, . . . , n} and the basis functions in V1, c > 0, V ⊥
1 is the

orthogonal complement of any finite-dimensional subspace V1 of V , and PV ⊥
1

is the
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projection operator of V onto V ⊥
1 . One example of the above set S is the set {F : F =

F1 + F2, F1 ∈ S2, F2 ∈ S⊥
2 }, where S2 is any nonempty bounded closed convex subset

of V2, S
⊥
2 is any subset of V ⊥

2 , and where V ⊥
2 is the orthogonal complement of V2.

Furthermore, as the resulting estimator is a linear combination of a finite number of

continuous basis functions defined on some compact subset of Rq, both the consistency

and weak convergence of the resulting estimator in the nonparametric regression models

can be proved by Corollary 3.1 and Theorem 3.3.

4.2 Measurement Error in Nonparametric Regression Models

Let

y = F (x) + ϵ

where x is a Rq-valued random vector and ϵ is a real-valued random variable.

For the above models, assume that X is the space consisting of random vectors

with means and Y is the space consisting of random variables with finite variances,

i.e., X being a separable Banach spaces and Y being a separable Hilbert space with

the inner product < y1, y2 >Y = E(y1y2) for y1, y2 ∈ Y . Further, assume that ϵ

has a finite variance. If the inner product for the separable Hilbert space V is <

F1, F2 >V =
∑n

i=1 < F1(xi), F2(xi) >Y and the objective functions are the expected

value of the error sum of squares E(
∑n

i=1 ϵ
2
i ) = ||F − F0||2V and h+(||F − F0||V ),

the existence of the unique nonrobust minimizer and the robust minimizer(s) and the

associated approximatability can be proved by Corollary 2.1 (b) and Corollary 2.1

(a), respectively, where xi ∈ X, yi ∈ Y , ϵi = yi − F (xi), and F0(xi) = yi. Further,

if the penalized objective function E(
∑n

i=1 ϵ
2
i ) + c∥PV ⊥

1
(F − F0)∥2V is employed and

S − F0 = {F − F0 : F ∈ S}, the shift of the set S, is a set of which orthogonal

projection on V1 is a nonempty bounded closed convex set, that the existence of the

minimizer, a linear combination of a finite number of basis functions, can be proved

by using Lemma 2.1, were V1 is any finite dimensional subspace of V . One example

of S is the set {F : F = F0 + F1 + F2, F1 ∈ S1, F2 ∈ S⊥
1 }, where S1 is any nonempty

bounded closed convex subset of V1 and S⊥
1 is any subset of V ⊥

1 . In addition, both the

consistency and weak convergence of the resulting estimator based on finite dimensional

approximation in the Polish space consisting of continuous nonlinear operators on the

compact subset of X (Aliprantis & Border, 2006, Chapter 3.19; Remark 3.1), i.e., a

linear combination of a finite number of basis functions in the space, can be proved by

Corollary 3.1 and Theorem 3.3.

Note that the other model to fit the data with the random regressor is

y = F [E(x)] + ϵ.

For the model, theoretical results can be proved analogous to the ones in Section 4.1.
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4.3 Functional Data Analysis

Let

yj(x) = Fj(x) + ϵxj , j = 1, . . . ,m

(Ramsay & Silverman, 2005), where x ∈ R, Fj(x) are real-valued functions, and ϵxj
are real-valued random variables.

The above model can be considered as the nonparametric regression models with

m functions (curves). Fj can be assumed to be real-valued functions falling in a sepa-

rable and reflexive Banach space V . Then, theoretical results analogous to the ones in

Section 4.1 concerning the existence, the approximatability, the consistency, and weak

convergence for the minimizers of interest and the associated objective functions can

be proved based on the ones in Section 2 and Section 3.

4.4 Nonparametric Regression Models Using Differential Equations

Ordinary differential equations have been used for the fitting of the functional data

(Ramsay & Silverman, 2005, Chapter 18 and Chapter 19). It might be also sensible to

consider the general differential equations for data fitting, i.e., the partial differential

equations (PDE). A dth order PDE is

D

[
x, F (x),

∂F (x)

∂x1
, . . . ,

∂|α|F (x)

∂xα1
j1
. . . ∂xαr

jr

, . . . ,
∂dF (x)

∂xdq

]
= 0,

where x = (x1, . . . , xq)
t ∈ Rq, α = (α1, . . . , αr), |α| =

∑r
k=1 αk ≤ d, αk are non-

negative integers, {j1, . . . , jr} ⊂ {1, . . . , q}, F is a real-valued function, and D is a

function defined on some subset of Rs. For example, a second order PDE with q=2

and s=8 is

D

[
x, F (x),

∂F (x)

∂x1
,
∂F (x)

∂x2
,
∂2F (x)

∂x21
,
∂2F (x)

∂x1∂x2
,
∂2F (x)

∂x2∂x1
,
∂2F (x)

∂x22

]
= 0.

The weak solutions of several well-known PDEs subject to prescribed boundary and ini-

tial conditions fall in the Hilbert space, including the ones of second order elliptic PDEs,

second order parabolic PDEs, second order hyperbolic PDEs, and Euler-Lagrange equa-

tion (Evans, 1998). Further, the weak solutions for the second order elliptic PDEs, the

second order parabolic PDEs and the second order hyperbolic PDEs can be imbedded

into the space of smooth functions, i.e., the subspace of some separable Hilbert space,

while the weak solutions for the Euler-Lagrange equation can fall in a separable Hilbert

space by imposing a few strong assumptions (Evans, 1998, Chapter 8.3). Therefore,

it is sensible to assume that the solution F , possibly not unique, exists and falls in a

separable Hilbert space.
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Suppose that the model for the response y is

y = F (x) + ϵ,

where ϵ is a real-valued random variable. If the total sum of squares given in Theorem

2.1 of Wei (2014) excluding the penalty term, i.e., the sum of those mean sum of squares

corresponding to the responses, the differential equation, the initial conditions, and the

boundary conditions, is employed and S is any set of which orthogonal projection on

V1 is a nonempty bounded closed convex set, i.e., the assumptions on S being relaxed,

the existence of the minimizer and the approximatability of the objective function can

be proved by using Theorem 2.1, where V1 is the space spanned by the representers.

For example, S can be the set {F : F = F1 + F2, F1 ∈ S1, F2 ∈ S⊥
1 }, where S1

is any nonempty bounded closed convex subset of V1 and S⊥
1 is any subset of V ⊥

1 . In

addition, if the resulting estimated solution is a linear combination of a finite number of

continuous basis functions defined on some compact subset of Rq, both the consistency

and weak convergence of the resulting estimator can be proved by Corollary 3.1 and

Theorem 3.3.
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無母數迴歸之有限維空間逼近論

魏文翔

東海大學統計系

摘 要

本文建立針對無母數迴歸 (nonparametric regression) 中被估計函數

為一定義及取值皆在可分離之實數場巴拿赫空間 (real separable Banach

space) 的非線性算子 (nonlinear operator) 而其估計算子所形成空間為有限

維情形下發展相關理論結果。 在估計過程中, 延伸出一新的概念,稱之為可逼近

性 (approximatability)。 被估計算子在不同狀況下是可逼近的理論結果被證

明, 而估計算子之一致性 (consistency) 及弱收斂性 (weak convergence) 亦

被證明。 此外, 這些理論能應用到不同的統計模式。

關鍵詞: 可逼近性, 巴拿赫空間 (Banach space), 一致性, 非線性算子, 無母數迴歸, 弱收斂性。

JEL classification: C14, C61.




