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WEN HSIANG WEI

Abstract. One class of possibly nonlinear operators which includes
bounded linear operators on a complex Hilbert space is defined. Spectral
theorems for certain possibly unbounded operators can be proved based
on the result for the class of operators.

1. Introduction

Operator theory has been at the heart of research in analysis (see [1]; [10],
Chapter 4). Moreover, as implied by [9], considering nonlinear case should
be essential. Developing useful results for the operators holds the promise
for the wide applications of nonlinear functional analysis to a variety of
scientific areas.

The commonly used operators might not be bounded. For examples, the
linear multiplication operator and the linear differentiation operator (see [6],
Chapter 10.7) which are related to the position operator and the momentum
operator (see [6], Chapter 11) in quantum mechanics are not bounded.

Spectral theory is one of the main topics of modern functional analysis
and its applications (see [6]; [14]). Spectral theory for certain classes of linear
operators, including compact, symmetric, unitary, or normal operators, has
been well developed (see [5]; [7]), particularly in a Hilbert space. Spectral
theory for the nonlinear operators is an emerging field in functional analysis
(see [3]). In [12], the spectral theorems for certain possibly nonlinear op-
erators which are referred to as the generalized real definite operators and
include bounded linear symmetric operators as special cases can be proved.
In this article, a class of operators which is referred to as the generalized
complex definite operators and includes the class of the bounded general-
ized real definite operators is defined and the main result given in [12] is
extended to the associated bounded generalized complex definite operators
in next section. Based on the spectral theorem for the generalized com-
plex definite operators, the spectral theorems of the possibly unbounded
nonlinear operators of interest can be proved in Section 3.

From now on D(F ) and R(F ) are denoted as the domain and the range of
an operator F , respectively, and the notation || · ||Z is denoted as the norm
of the normed space Z. The space of interest is the normed space implicitly.
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On the other hand, the other function spaces will be indicated explicitly.
Note that vector spaces and normed spaces of interest in this article are
not trivial, i.e., not only including the zero element. Also, let S2\S1 denote
the intersection of the set S2 and the complement of the set S1 and let the
notation of the composition of two operators be ◦.

2. Generalized complex definite operators

Since the main results in this article are based on the quasi-product,
the generalized real definite operators, the generalized eigenvector, and the
projection operator in [12], their definitions and properties along with the
normed spaces of interest are summarized as follows.

• Let V (S, Y ) be the set of all operators from the set S ⊂ X into Y ,
0 ∈ S, i.e., the set of arbitrary maps from S into Y , where X and
Y are normed spaces over a field K with some sensible norms and
where K is either the real field R or the complex field C. Also let
the zero element in V (S, Y ) be the operator of which image equal
to the zero element in Y . An application of algebraic operations to
elements F1, F2 ∈ V (S, Y ) gives the operators F1 +F2 and αF1 from
S into Y with (F1 +F2)(x) = F1(x) +F2(x) and (αF1)(x) = αF1(x)
for x ∈ S, where α ∈ K is a scalar. Then V (S, Y ) is a vector
space. Let B(S, Y ) be the subset of V (S, Y ) with the property that
||F ||B(S,Y ) is finite for all F ∈ B(S, Y ), where

||F ||B(S,Y ) = max

(
sup

x 6=0,x∈S

‖F (x)‖Y
‖x‖X

, ‖F (0)‖Y

)
.

Note that B(S, Y ) is a normed space, i.e., || · ||B(S,Y ) being a normed
function on B(S, Y ). As X = Y , the notations V (S) = V (S,X) and
B(S) = B(S,X) are used.
• A quasi-product [·, ·]S on S is a mapping (or a map) of S × S into

the scalar field K with the following properties:
(a)

[x, x]S ≥ 0

for x ∈ S.
(b)

|[x, y]S | ≤ c ||x||X ||y||X
for x, y ∈ S, where c is a positive number.
(c) [

n∑
i=1

αixi, y

]
S

= c(y)

n∑
i=1

αi [xi, y]S
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for any n ≥ 1, x1, . . . , xn, y,
∑n

i=1 αixi ∈ S and α1, . . . , αn ∈ K,
where c : S → R is a positive bounded function and is bounded
away from 0.
• An operator F : D(F ) → X is generalized real definite if and only

if there exist a quasi-product [·, ·]X and an operator g : D(F ) → X
satisfying g(x) 6= 0 for x 6= 0 and

[F (x), g(x)]X ∈ R
for x ∈ D(F ), where D(F ) ⊂ X. Furthermore, F is g-positive,
denoted by F ≥ 0, if and only if

[F (x), g(x)]X ≥ 0

for x ∈ D(F ). For the operators F1 : D(F1)→ X and F2 : D(F1)→
X,

F1 ≥ F2

if and only if

F1 − F2 ≥ 0,

where D(F1) ⊂ X. The operator |F | is defined by

|F | (x) = F (x)

if [F (x), g(x)]X ≥ 0 and

|F | (x) = −F (x)

if [F (x), g(x)]X < 0 for x ∈ D(F ). The positive part of F is

F+ =
|F |+ F

2
and the negative part of F is

F− =
|F | − F

2
.

If F is a symmetric linear operator on a Hilbert space, the operator
g is the identity map, and the quasi-product is the inner product
on the Hilbert space, F is generalized real definite and F being
positive implies F being g-positive. Therefore, the generalized real
definiteness and the g-positivity extend the notions of the symmetry
and the positivity respectively. Note that a generalized real definite
operator F might not be bounded, i.e., not lying in B[D(F )].
• Let F : D(F ) → X be an operator and γ : D(F ) → X be a g-

positive operator satisfying [γ(x), g(x)]X = k1(x)||x||X ||g(x)||X and
||γ(x)||X = k2(x)||x||X for x ∈ D(F ), where D(F ) ⊂ X, both k1

and k2 are positive bounded functions and are bounded away from
0. The g-resolvent set of F , denoted by ρ(F ) and ρ(F ) ⊂ C, consists
of the scalars λ such that Rλ = (F − λγ)−1 exists (see [6], A1.2), is
bounded, and D(Rλ) is a dense set of X. The set σ(F ) = C\ρ(F )
is referred to as the g-spectrum of F . As F (x) = λγ(x) for some
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x 6= 0, x is referred to as the g-eigenvector of F corresponding to the
g-eigenvalue λ.

• The projection operator ES ∈ B[D(ES)] corresponding to the set
S ⊂ D(ES) is defined by ES(x) = x if x ∈ S and ES(x) = 0
otherwise, where D(ES) ⊂ X.

Any bounded linear operator T on a complex Hilbert space can be de-
composed as T = Tr + iTc, where both Tr and Tc are linear symmetric
operators. In addition, the spectral resolution of a normal linear operator is
the integral over some bounded region of the complex plane (see [11], Section
111; [13], Chapter XI ). In this section, the nonlinear generalization of the
above bounded linear operator is given and is referred to as the generalized
complex definite operator. Furthermore, the spectral resolution of certain
generalized complex definite operators has the form similar to the one of
normal linear operators as stated in Theorem 2.5.

Remark 2.1. For a Banach algebra over the complex field with an invo-
lution (see [2], Chapter 6), any element a in the Banach algebra can be
decomposed as a = ar + iac, where both ar and ac are self-adjoint.

It is natural to define the generalized complex definite operator as follows.

Definition 2.2. Let X be a complex normed space. An operator F :
D(F )→ X is generalized complex definite if and only if

F = Fr + iFc,

where D(F ) ⊂ X, both Fr and Fc are generalized real definite with respect
to the same operator g on D(F ) and the same quasi-product [·, ·]X on X. Fr
is referred to as the real part of F , while Fc is referred to as the imaginary
part of F .

From now on let N(F ) be the null space (set) of an operator F , i.e.,
N(F ) = {x : F (x) = 0, x ∈ D(F )}. Further, let Frsri = Fr − sriγ, and
Fcscj = Fc − scjγ, where sri, scj ∈ R. Let Esri and Escj be the projection

operators corresponding to N(F+
rsri) and N(F+

cscj ), respectively. In addition,

let ∆ = µ− λ and E∆ = Eµ − Eλ, where λ, µ ∈ R and λ < µ.
The following lemma, a counterpart of Lemma 3.19 in [12], gives the

existence of the spectral integral. Since the proof of the lemma is similar to
its counterpart, the proof is not presented.

Lemma 2.3. Let F ∈ V (S) be generalized complex definite, F (0) = 0, and
Fr, Fc ∈ B(S), where X is a complex Banach space. There exist a bounded
interval [mr,Mr] with any partition {sri} satisfying mr = sr0 < sr1 <
· · · < srn = Mr, ∆ri = sri − sr(i−1) < εnm and a bounded interval [mc,Mc]
with any partition {scj} satisfying mc = sc0 < sc1 < · · · < scm = Mc,
∆cj = scj−sc(j−1) < εnm such that Fnm =

∑n
i=1

∑m
j=1 zij(γ◦E∆ij ) converges

to a nonlinear operator in B(S) with respect to the norm topology || · ||B(S)
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and the convergence is independent of the choice of zij = λri + iλcj with
λri ∈ (sr(i−1), sri] and λcj ∈ (sc(j−1), scj ] as n,m → ∞, where Emr(x) = 0,
Emc(x) = 0 for x ∈ S, EMr = I, EMc = I, E∆ij = E∆ri ◦ E∆cj , and
0 < εnm −→

n,m→∞
0, and where I is the identity map on S.

Based on the above lemma, the associated spectral integral can be defined
thus.

Definition 2.4. LetX be a complex Banach space, F ∈ V (S) be generalized
complex definite, F (0) = 0, Fr, Fc ∈ B(S), the partition {sri} satisfy mr =
sr0 < sr1 < · · · < srn = Mr, ∆ri = sri − sr(i−1) < εnm, and the partition
{scj} satisfy mc = sc0 < sc1 < · · · < scm = Mc, ∆cj = scj − sc(j−1) < εnm,

where 0 < εnm −→
n,m→∞

0. If
∑n

i=1

∑m
j=1 zij(γ◦E∆ij ) converges to an operator

in the sense of operator convergence, i.e., with respect to the norm topology
|| · ||B(S), and the convergence is independent of the choice of zij = λri+iλcj ,
λri ∈ (sr(i−1), sri] and λcj ∈ (sc(j−1), scj ] as n,m→∞, the limit operator is

denoted as
∫

Ω zd(γ ◦Ez), where E∆ij = E∆ri ◦E∆cj and Ω = {z = λr + iλc :
(λr, λc) ∈ [mr,Mr]× [mc,Mc]} is a bounded rectangle of the complex plane.

The following inequalities, based on Lemma 3.18 (c) in [12], give the
relations between the generalized real definite operators Fr and Fc and the
function γ, i.e., the approximated decomposition of Fr and Fc in terms of γ,

sr(i−1)(γ ◦ E∆ri) ≤ Fr ◦ E∆ri ≤ sri(γ ◦ E∆ri)

and

sc(j−1)(γ ◦ E∆cj ) ≤ Fc ◦ E∆cj ≤ scj(γ ◦ E∆cj ).

Using the above inequalities gives the following theorem.

Theorem 2.5. Let X be a complex Banach space, F ∈ V (S) be generalized
complex definite, F (0) = 0, and Fr, Fc ∈ B(S). Then

[F (x), g(x)]X =

[[∫
Ω
zd(γ ◦ Ez)

]
(x), g(x)

]
X

for x ∈ S, where Ω depending on F is a bounded rectangle of the complex
plane.

Proof.
∫

Ω zd(γ◦Ez) exists by Lemma 2.3. Because F =
∑n

i=1

∑m
j=1 F ◦E∆ij ,

hence
n∑
i=1

m∑
j=1

sri(γ ◦ E∆ij )− Fr ≤
n∑
i=1

m∑
j=1

∆ri(γ ◦ E∆ij ) ≤ εnm
n∑
i=1

m∑
j=1

γ ◦ E∆ij

and
n∑
i=1

m∑
j=1

scj(γ ◦ E∆ij )− Fc ≤
n∑
i=1

m∑
j=1

∆cj(γ ◦ E∆ij ) ≤ εnm
n∑
i=1

m∑
j=1

γ ◦ E∆ij .
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Thus, there exist positive numbers k1 and k2 such that for λri = sri and
λcj = scj , ∣∣∣∣∣∣

 n∑
i=1

m∑
j=1

zij(γ ◦ E∆ij )(x)− F (x), g(x)


X

∣∣∣∣∣∣
=

∣∣∣∣∣∣
 n∑

i=1

m∑
j=1

sri(γ ◦ E∆ij )(x)− Fr(x)


+i

 n∑
i=1

m∑
j=1

scj(γ ◦ E∆ij )(x)− Fc(x)

 , g(x)


X

∣∣∣∣∣∣
≤ k1


∣∣∣∣∣∣
 n∑
i=1

m∑
j=1

sri(γ ◦ E∆ij )(x)− Fr(x), g(x)


X

∣∣∣∣∣∣
+

∣∣∣∣∣∣
 n∑
i=1

m∑
j=1

scj(γ ◦ E∆ij )(x)− Fc(x), g(x)


X

∣∣∣∣∣∣


≤ 2k1

εnm n∑
i=1

m∑
j=1

(γ ◦ E∆ij )(x), g(x)


X

= 2k1 [εnmγ(x), g(x)]X
≤ 2k1k2εnm ||x||X ||g(x)||X

for x ∈ S. [(
∫

Ω zd(γ ◦ Ez) − F )(x), g(x)]X = 0 by the continuity of the
quasi-product and hence[∫

Ω
zd(γ ◦ Ez)(x), g(x)

]
X

= [F (x), g(x)]X .

�

Note that

F =

∫
Ω
zd(γ ◦ Ez)

also holds by imposing some conditions on the quasi-products (see [12]).

3. Nonlinear spectral analysis

In Section 3.1, two examples of the unbounded nonlinear operators asso-
ciated with the linear multiplication and the linear differentiation operators
(see [6], Chapter 10.7) which are related to the position operator and the mo-
mentum operator (see [6], Chapter 11), respectively, in quantum mechanics
are given. Furthermore, spectral analysis for the possibly unbounded non-
linear operators is given in Section 3.2.
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3.1. Examples. Let Lp(−∞,∞), 1 ≤ p <∞, be the spaces of all complex-
valued functions x defined on (−∞,∞) satisfying that |x|p is integrable with
respect to the Lebesgue measure. In addition, for x1, x2 ∈ L1(−∞,∞) the
quasi-product is defined by

[x1, x2]L1(−∞,∞) =

∫ ∞
−∞

x1(t)dt

∫ ∞
−∞

x2(t)dt,

where z is the conjugate of the complex number z.

Example 3.1. Let the linear operator Tm : STm → L2(−∞,∞) defined
by Tm(x) = x0x for x ∈ STm , where x0(t) = t for t ∈ (−∞,∞) and
STm , a subset of L2(−∞,∞), consists of all functions satisfying x0x ∈
L2(−∞,∞). The relevant nonlinear operator Fm : SFm → L1(−∞,∞)
defined by Fm(x) = x0|x|2 for x ∈ SFm , where SFm consisting of all func-
tions satisfying x0|x|2 ∈ L1(−∞,∞) is a subset of L2(−∞,∞). Note that
STm ⊂ SFm . Both Tm and Fm are unbounded because for xn defined by
xn(t) = 1 for (n− 1) ≤ t ≤ n and xn(t) = 0 elsewhere,

‖Tm(xn)‖L2(−∞,∞)

‖xn‖L2(−∞,∞)
= [(n− 1)n+ 1/3]1/2

and

‖Fm(xn)‖L1(−∞,∞)

‖xn‖L2(−∞,∞)
= n− 1/2

for every positive n. Note that

< Tm(e), e >L2(−∞,∞)=
[
Fm(e), |e|2

]
L1(−∞,∞)

for any unit vector e ∈ STm , where < ·, · >L2(−∞,∞) is the inner product
on L2(−∞,∞). e ∈ STm is referred to as the state function (or the wave
function) and Tm is the operator corresponding to the observable (see [4],
Chapter 2; [6], Chapter 11.1; [8], Chapter 7) in quantum mechanics.

Example 3.2. Let the linear operator Td : STd → L2(−∞,∞) defined by

Td(x) = ix
′

for x ∈ STd , where x
′

is the derivative of x and STd , a subset

of L2(−∞,∞), consists of all functions satisfying x
′ ∈ L2(−∞,∞). The

relevant nonlinear operator Fd : SFd
→ L1(−∞,∞) defined by Fd(x) = ix

′
x̄

for x ∈ SFd
, where SFd

, a subset of L2(−∞,∞), consists of all functions

satisfying x
′
x̄ ∈ L1(−∞,∞), and where x̄ is the conjugate function of x.

Note that STd ⊂ SFd
. Both Td and Fd are unbounded because for xn defined

by xn(t) = nt for 0 ≤ t ≤ 1/n and xn(t) = 0 elsewhere,

‖Td(xn)‖L2(−∞,∞)

‖xn‖L2(−∞,∞)
=
√

3n

and

‖Fd(xn)‖L1(−∞,∞)

‖xn‖L2(−∞,∞)
=

√
3n

2
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for every positive n. Similar to the previous example,

< Td(e), e >L2(−∞,∞)=
[
Fd(e), |e|2

]
L1(−∞,∞)

for any unit vector e ∈ STd , where e is the wave function and Td is associated
with the observable (see [6], Chapter 11.1) in quantum mechanics.

3.2. Spectral analysis. In this subsection, both the spectral resolutions of
the possibly unbounded nonlinear operators in terms of the quasi-products
and a result related to the g-resolvent set are given.

3.2.1. Nonlinear Cayley transform. The spectral theorem of the self-adjoint
linear operator on a Hilbert space relies on the Cayley transform (see [6],
Chapter 10.6). Analogously, the nonlinear Cayley transform plays a crucial
role in the spectral theorem of the nonlinear operators. The boundedness of
the nonlinear Cayley transform is stated in Lemma 3.5, while the equation
for the operator and its Cayley transform is given in Theorem 3.6. The
lemma and the theorem can be used to give the spectral resolution of the
possibly unbounded nonlinear operator in terms of the quasi-products.

Definition 3.3. Let X be a complex normed space. The operational Cayley
transform of F ∈ V (S) is Gζ : R(F−i)→ X defined by Gζ = Fi ◦F−1

−i , where
F−i : S → X defined by F−i = F + iζ is injective, ζ ∈ V (S) with ζ(0) = 0,
and Fi : S → X is defined by Fi = F − iζ.

Note that the existence of the operational Cayley transform depends on
the injectiveness of F−i. An operator can be injective as the operator is
bounded below defined as follows.

Definition 3.4. An operator F ∈ V (S, Y ) is bounded below if and only if
there exists a positive number k such that

||F (x1)− F (x2)||Y ≥ k ||x1 − x2||X

for x1, x2 ∈ S.

The main results of this subsection are given below.

Lemma 3.5. Let F ∈ V (S) and F (0) = 0. If F−i = F + iζ is bounded
below, then the operational Cayley transform Gζ of F is bounded.

Proof. The injectiveness of F−i is proved first. Suppose not, then there exist
x, y ∈ X,x 6= y, such that F−i(x) = F−i(y). Hence,

0 = ||F−i(x)− F−i(y)||X ≥ k ||x− y||X > 0,
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a contradiction, where k is some positive number. Therefore, F−1
−i exists.

Let x∗ = F−1
−i (x) for x ∈ R(F−i). Because F−i is bounded below,

||Gζ(x)||X
= ||Fi(x∗)||X
≤ ||(Fi − F−i) (x∗)||X + ||F−i(x∗)||X
≤ k ||F−i(x∗)||X
= k ||x||X ,

i.e., ||Gζ ||B[R(F−i),X] ≤ k, where k is some positive number.
�

Theorem 3.6. Let Gζ be the operational Cayley transform of the operator
F ∈ V (S). If both F−i = F + iζ and ζ are injective, then

F =

(
I +Gζ

2

)
◦
[
(I −Gζ)−1

]
◦ (2iζ) ,

where I : R(F−i)→ X is the identity map.

Proof. Since (Gζ ◦ F−i)(x) = F (x)− iζ(x) = Fi(x) for x ∈ S, hence

[(I +Gζ) ◦ F−i] (x) = F−i(x) + (Gζ ◦ F−i) (x) = 2F (x)

and

[(I −Gζ) ◦ F−i] (x) = F−i(x)− (Gζ ◦ F−i) (x) = 2iζ(x).

If (I −Gζ)−1 exists, then

F−i(x) =
[
(I −Gζ)−1 ◦ (2iζ)

]
(x)

and thus

F =

(
I +Gζ

2

)
◦
[
(I −Gζ)−1 ◦ (2iζ)

]
.

It remains to prove the existence of (I −Gζ)−1, i.e., I −Gζ being injective.
For y1, y2 ∈ D(Gζ), there exist x1, x2 ∈ S such that F−i(x1) = y1 and
F−i(x2) = y2. Then if

(I −Gζ) (y1) = (I −Gζ) (y2) = 2iζ(x1) = 2iζ(x2),

then F−i(x1) = y1 = y2 = F−i(x2) owing to ζ being injective and x1 = x2

thus. Therefore, I −Gζ is injective and (I −Gζ)−1 exists.
�

3.2.2. Spectral analysis. In the following, Lemma 3.7 gives the result related
to the transforms of the projection operators. Lemma 3.7 can be used to
prove Lemma 3.8, a ”transformed” expression of a nonlinear operator. Based
on Lemma 3.8, Theorem 3.9 gives the spectral representation in terms of
the quasi-products for the possibly unbounded nonlinear operators. Let
H(S1) = {H(x) : x ∈ S1}, where H ∈ V (S) and S1 ⊂ S.
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Lemma 3.7. Let H ∈ V (S), H(0) = 0, and H−1 exists. Then

ES1(x) =
(
H−1 ◦ EH(S1)

)
[H(x)] ,

i.e.,

EH(S1) [H(x)] = (H ◦ ES1) (x),

where S1 containing 0 is a subset of S, the projection operator ES1 is defined
on S, and the projection operator EH(S1) is defined on H(S).

Proof. As x ∈ S1, then H(x) ∈ H(S1) and thus

ES1(x) = x =
(
H−1 ◦H

)
(x) =

(
H−1 ◦ EH(S1)

)
[H(x)] .

As x 6∈ S1, then H(x) 6∈ H(S1) since otherwise there exists a x∗ ∈ S1 such
that H(x∗) = H(x), a contradiction to the injectiveness of H. Therefore,

ES1(x) = 0 = H−1(0) =
(
H−1 ◦ EH(S1)

)
[H(x)] .

�

Lemma 3.8. Let X be a complex Banach space and F ∈ V (S) be generalized
complex definite with F (0) = 0, H ∈ V (S) with H(0) = 0, and H−1 exist.
Then

n∑
i=1

m∑
j=1

zij
(
γ ◦ E∆ij

)
(x) =

n∑
i=1

m∑
j=1

zij

(
γH−1 ◦ EH(∆ij)

)
(y)

for x ∈ S, zij ∈ C, where E∆ij are the projection operators corresponding to
F given in Definition 2.4, EH(∆ij) are the projection operators defined on

H(S) corresponding to the sets H[R(E∆ij )], γH−1 = γ ◦H−1, and y = H(x).

Proof. It suffices to prove that (γ ◦ E∆ij )(x) = (γH−1 ◦ EH(∆ij))(y). By
Lemma 3.7, (

γH−1 ◦ EH(∆ij)

)
(y)

=
[
γ ◦
(
H−1 ◦ EH(∆ij)

)]
(y)

=
(
γ ◦ E∆ij

)
(x).

�

Theorem 3.9. Let X be a complex Banach space, F ∈ V (S), and F (0) = 0.
If the operational Cayley transform Gζ = Gζr + iGζc of F is general-
ized complex definite with the generalized real definite operators Gζr, Gζc ∈
B[R(F−i), X] and both F−i = F + iζ and ζ are injective, then

[F (x), k(x)]X =

[[∫
Ω
zd
(
γH−1 ◦ EH(z)

)]
(x), k(x)

]
X
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for x ∈ S, where Ω is the bounded rectangle of the complex plane depending
on the operator (I + Gζ)/2, zij are the associated grid points in Ω, H =
(−i/2)[ζ−1 ◦ (I −Gζ)], γH−1 = γ ◦H−1, k ◦H = g, and

lim
n,m→∞

 n∑
i=1

m∑
j=1

zij

(
γH−1 ◦ EH(∆ij)

) (x) =

[∫
Ω
zd
(
γH−1 ◦ EH(z)

)]
(x),

i.e., the limit being in sense of pointwise convergence, and where EH(∆ij)

defined on H[R(F−i)] is the projection operator corresponding to the sets
H[R(E∆ij )] and E∆ij defined on R(F−i) is the projection operator corre-
sponding to the operator (I +Gζ)/2.

Proof. Let x = H(y) for y ∈ R(F−i). F (x) = [(I + Gζ)/2](y) for x ∈ S
by Theorem 3.6 and then by the spectral representation for the bounded
operator (I +Gζ)/2, i.e., Theorem 2.5, and by Lemma 3.8,

[F (x), k(x)]X

=

[[∫
Ω
zd (γ ◦ Ez)

]
(y), g(y)

]
X

= lim
n,m→∞

 n∑
i=1

m∑
j=1

zij
(
γ ◦ E∆ij

) (y), g(y)


X

=

 lim
n,m→∞

 n∑
i=1

m∑
j=1

zij

(
γH−1 ◦ EH(∆ij)

) (x), k(x)


X

=

[[∫
Ω
zd
(
γH−1 ◦ EH(z)

)]
(x), k(x)

]
X

.

�

3.2.3. G-resolvent set. The main results of this subsection, Theorem 3.12
and Corollary 3.13, are about the g-resolvent set and the spectral resolution
of some nonlinear operators. The following lemma and corollary can be used
to prove Theorem 3.12. The proof of the lemma is quite routine and is not
presented.

Lemma 3.10. Let the operator F ∈ V (S, Y ) be bounded below. Then F is
injective.

Corollary 3.11. Let the operator F ∈ V (S, Y ) be bounded below and F (0) =
0. Then F−1 ∈ B[R(F ), X].

Proof. Since F is bounded below, F is injective by Lemma 3.10 and F−1

exists thus. Because F is bounded below,∣∣∣∣F−1
∣∣∣∣
B[R(F ),X]

= sup
y 6=0,y∈R(F )

∣∣∣∣F−1(y)
∣∣∣∣
X

||y||Y
= sup

F (x)6=0,x∈S

||x||X
||F (x)||Y

≤ 1

k
,
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where k is some positive number.
�

Theorem 3.12. Let X be a complex normed space, the operator F ∈ V (S),

F (0) = 0, η ∈ V (S) be bounded below with η(0) = 0, both F̂ (x1, x2) =
F (x1)−F (x2) and η̂(x1, x2) = η(x1)−η(x2) be generalized real-definite with
respect to the same quasi-product and the operator g on S×S, and η̂ satisfy

[η̂(x1, x2), g(x2, x2)]X = k1(x1, x2) ||η̂(x1, x2)||X ||g(x1, x2)||X
for x1, x2 ∈ S, where k1 is a positive function on S × S and is bounded
away from 0. Then Fz = F − zη is bounded below and F−1

z ∈ B[R(Fz), X]
for z ∈ C\R. Further, if η = γ and R(Fz) is a dense set of X, then
C\R ⊂ ρ(F ).

Proof. Let z = a + bi, b 6= 0. If Fz is bounded below, F−1
z ∈ B[R(Fz), X]

by Corollary 3.11. Further, C\R ⊂ ρ(F ) as η = γ and R(Fz) is a dense set

of X. It remains to prove that Fz is bounded below. Because F̂ and η̂ are
generalized real-definite, then for x1, x2 ∈ S,

[Fz(x1)− Fz(x2), g(x1, x2)]X

= k
{[
F̂ (x1, x2)− aη̂(x1, x2), g(x1, x2)

]
X
− bi [η̂(x1, x2), g(x1, x2)]X

}
and thus

Im {[Fz(x1)− Fz(x2), g(x1, x2)]X} = −kb [η(x1)− η(x2), g(x1, x2)]X ,

where k greater than some positive constant is a positive number depending
on the values of g(x1, x2) and Im(z) is the imaginary part of the complex
number z. Then

|[Fz(x1)− Fz(x2), g(x1, x2)]X | ≥ kk |b| ||x1 − x2||X ||g(x1, x2)||X
owing to η being bounded below and

|[Fz(x1)− Fz(x2), g(x1, x2)]X | ≤ k̃| ||Fz(x1)− Fz(x2)||X ||g(x1, x2)||X ,

where k and k̃ are some positive numbers. Therefore, Fz is bounded below
by the two inequalities.

�

A linear self-adjoint operator defined on a subset containing 0 of a Hilbert
space is a special case of the operator F in Theorem 3.12 if g(x1, x2) =
x1−x2. In addition, the above theorem indicates that F−i = F +iζ involved
in the operational Cayley transform Gζ is bounded below and thus the
operational Cayley transform is bounded by imposing some conditions on F
and ζ. Then, the spectral resolution of some possibly unbounded operators
in terms of the quasi-products can be proved based on Theorem 3.9 and
Theorem 3.12, as indicated by the following corollary.
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Corollary 3.13. Let X be a complex Banach space, F ∈ V (S), F (0) = 0,
and Gζ be the operational Cayley transform of F . If ζ is bounded below, both

F̂ (x1, x2) = F (x1)−F (x2) and ζ̂(x1, x2) = ζ(x1)−ζ(x2) are generalized real-
definite with respect to the same quasi-product and the operator g on S×S,
and ζ̂ satisfies[

ζ̂(x1, x2), g(x2, x2)
]
X

= k1(x1, x2)
∣∣∣∣∣∣ζ̂(x1, x2)

∣∣∣∣∣∣
X
||g(x1, x2)||X

for x1, x2 ∈ S, then

[F (x), k(x)]X =

[[∫
Ω
zd
(
γH−1 ◦ EH(z)

)]
(x), k(x)

]
X

for x ∈ S, where Ω is the bounded rectangle of the complex plane depending
on the operator (I + Gζ)/2, H = (−i/2)[ζ−1 ◦ (I − Gζ)], γH−1 = γ ◦H−1,∫

Ω zd
(
γH−1 ◦ EH(z)

)
is the limit operator given in Theorem 3.9, k1 is a

positive function on S×S and is bounded away from 0, and k◦H = g1◦F−1
−i ,

and where g1(x) = g(x, 0).

Proof. F−i is bounded below and F−1
−i ∈ B[R(F−i), X] by Theorem 3.12.

Hence, the operational Cayley transform Gζ is bounded by Lemma 3.5. Let

y = F−1
−i (x) for x ∈ R(F−i). Then Gζ(x) = Fi(y) = F (y) − iζ(y). Let

Gζr(x) = F (y) and Gζc(x) = −ζ(y). Then Gζr and Gζc are generalized

real-definite with respect to g1 ◦ F−1
−i and are bounded owing to Gζ and

ζ ◦ F−1
−i being bounded. By Theorem 3.9, the result holds.

�
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